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Abstract— This paper presents an approach to learn mean-
ingful spatial relationships in an unsupervised fashion from the
distribution of 3D object poses in the real world. Our approach
begins by extracting an over-complete set of features to describe
the relative geometry of two objects. Each relationship type is
modeled using a relevance-weighted distance over this feature
space. This effectively ignores irrelevant feature dimensions.
Our algorithm RANSEM for determining subsets of data that
share a relationship as well as the model to describe each
relationship is based on robust sample-based clustering. This
approach combines the search for consistent groups of data with
the extraction of models that precisely capture the geometry of
those groups. An iterative refinement scheme has shown to be
an effective approach for finding concepts of differing degrees
of geometric specificity.

Our results show that the models learned by our approach
correlate strongly with the English labels that have been given
by a human annotator to a set of validation data drawn
from the NYUv2 real-world Kinect dataset, demonstrating that
these concepts can be automatically acquired given sufficient
experience. Additionally, the results of our method significantly
out-perform K-means, a standard baseline for unsupervised
cluster extraction.

I. INTRODUCTION

In this paper we present an approach to learn meaningful
spatial relationships that govern the relative geometry of pairs
of objects in natural scenes. Commonly referred to as “object
contexts”, these arise from effects ranging from laws of
physics (e.g., gravity causes a pillow to rest on top of a bed)
to human customs and culture (e.g., it is polite to leave one’s
chair tucked squarely under the table). Object context models
are an important component in a robot’s understanding of its
environment. They have been used previously as a tool to
regularize the perception of holistic 3D scenes [1] and to
ensure that manipulated objects can be placed intelligently
[2], among countless other examples.

Humans regularly reason about a wide variety of relation-
ships, for example: on, near, facing, inside, beside, aligned-
with, perpendicular-to and covering. Each relationship type
has a precise meaning and humans will tend to agree with
one another when describing the relationships that occur
in a scene. Learning from data is the most promising
approach to create such a rich and robust representation.
In particular, the recent introduction of large datasets of
realistic scenes and precise object labels, such as the NYUv2
Kinect dataset, include many object relationships of interest.
These datasets are not annotated with relationship labels
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Fig. 1. An annotated scene with examples of night stands to the left and
right of the bed, pillows on the bed, and the bed supporting pillows.

but this paper demonstrates that unsupervised learning is
a feasible approach to extract meaningful relationships by
finding geometric regularities in the data.

There have been many models proposed to represent spa-
tial relationships. They commonly represent relative spatial
information between the objects, as opposed to their absolute
position or orientation, typically as a prior or constraint. The
stronger a relationship, the more tightly it constrains the
position of one object with respect to another. In particular,
for many of the relationships that exist in man-made indoor
scenes, this constraint is likely to exist in a subset of
the spatial dimensions. For example, a supporting relation
limits one object to lie in a narrow region of space at the
surface of the other. This paper demonstrates an approach
to automatically select the relevant feature dimensions that
describe a relationship, driven by regularities in large datasets
collected in indoor spaces.

Our technical approach begins with the extraction of
features from pairs of objects. We extract large feature
vectors that contain both relevant and irrelevant dimensions,
based on simple geometric computations about the pair being
considered. Our relationship model contains a relevance
weighting of these dimensions, which is effectively able to
ignore irrelevant information. Models are parameterized and
can potentially represent a diverse range of concepts, only
a few of which correspond to meaningful relationships that
actually occur in the world. We have designed an efficient
unsupervised learning algorithm to determine a small set of
active relationship models from training data. We evaluate
this method on a set of object pairs that was manually labeled



with the relationship name (e.g., on or left). Our results
demonstrate that our automated approach reliably recovers
concepts that are meaningful to humans and we are able
to introspect these models to find that the automatically
selected feature dimensions are similar to those a human
would understand as useful for a relationship type.

II. RELATED WORK

The ability of humans to perceive and reason about object
relationships has been studied by numerous researchers (e.g.,
Beiderman et al. [3]). In seminal work in human psychology,
Landau and Jackendoff identified a minimal subset of spatial
predicates that capture much of how naive humans describe
spatial relationships at a qualitative level [4]. Exploiting the
the naturalness of spatial relationships in human perception,
Skubic et al. [S] investigated a human-robot interaction
mechanism in which an evidence grid was used to compute
pre-defined relationships that could be used for robot control.
Even earlier, Zelek [6] developed a minimalist language
over spatial relationships on a 2D maps that uses speech
recognition to allow spatial predicates to be exploited in
mobile robot control and navigation. The resulting SPOTT
architecture allows a person to steer a robot in a simple
indoor environment by using spatial predicates. In all this
work on exploiting spatial relations computationally, the
relationships were discrete and computed with respect to a
2D plane and/or the relationships were largely pre-coded.
Our work, in contrast focuses on learning these relationships
and examining their combinatorial structure.

Object context has been used as a sub-component of
countless robotics algorithms for a variety of tasks, such as
object recognition [7]. When labeling 3D point clouds with
semantic object labels, spatial context is useful as a prior
on label transitions, as has been demonstrated by [8]. When
searching for an object in an environment, object context
can be used as an informed heuristic to indicate promising
locations, once an initial set of objects has been observed
[9], [10], [11]. Context is also a guide to indicate where an
object can be safely placed after manipulation [2].

We are strongly motivated by the potential use of spatial
relationships in the task of generating natural language
descriptions from sensory data. Recent work has shown that
Deep Learning methods can extract features and objects from
images [12] and to generate meaningful text resulting from
these shared internal representations. In fact, the text de-
scriptions often include reference to spatial context concepts,
but these are not grounded in any physical understanding
of the 3D space. That is, although the method outputs “the
cup is on the table”, it cannot direct a robot to pick up
that cup. Our method is much more firmly grounded in the
3D scene model that defines the objects in a pair, but does
share the component of unsupervised concept creation. This
is an interesting approach for further work. The sentence-
to-geometry alignment problem has previously been studied
by [13], which demonstrates particular words can be aligned
to objects in a scene. However, that work did not describe

Fig. 2. An example of a follower object B (green) placed to the left of an
anchor object A (red). Orientations of bounding volumes are indicated by
a green bar extending out of the front center of the volumes. We illustrate
two FGDs: right-left-x and bottom-bottom-y.

the context governing the layout of objects, or use spatially
relevant language - a task we hope to pursue.

The learning of object relationship models has been pre-
viously studied. In particular, the 3D Geometric Phrases
(3DGP) model [1] is the most similar approach to our own.
That method learned relationships for specific types of ob-
jects, such as the pattern of chairs around a dining table using
training data that contained annotated 3D objects. However,
while we learn concepts that generalize across pairs made up
of many different categories, such as supported-by, a 3DGP
is highly specialized to one specific set of object labels. This
allows us to more easily scale up to a large set of object
types, and we show results on a larger set of realistic data.

III. REPRESENTATION

We propose a set of face-centric geometric descriptors
(FGDs) that measure the relative positions of points on
the boundaries of two objects. An FGD is extracted from
two objects represented using oriented rectangular bounding
volumes, where the orientation denotes the front face of the
object. We allow bounding volumes to yaw, but not roll and
pitch. This is a typical approach since household objects are
usually all aligned with the ground plane, and thus do not
roll or pitch with respect to one another. An anchor object A
and a follower object B are both represented in the reference
frame of A. We then extract the center point of each of
the six surfaces of the rectangular bounding volumes, which
we call the key points. For example, the key points of A
are A-top, A-bottom, A-left, A-right, A-front, A-back. Each
point is a 3-element vector consisting of the (X,y,z) position
of the point. A feature dimension can be constructed by
subtracting the corresponding vector element of any point on
A from any point on B. For example, we can construct the
dimension right-left-x by subtracting the x vector element of
A-right from that of B-left (see Figure 2 for an illustration).
We perform only the comparisons that are not uniformly
redundant which leaves 12 continuous dimensions.



Many semantic concepts rely heavily on discrete features.
The left and right relationships, for example, do not depend
crucially on the distance between objects. Rather, one object
simply needs to be on the left or right side of the other. For
each continuous FGD, we introduce a discrete descriptor,
which is either 1 or -1 depending on whether the continuous
feature is positive or negative. During training, a weighting is
chosen for the discrete features so that they are comparable
with the continuous features.

The full list of discrete and continuous features we use is
shown in Table III. Only a subset of the 24 original feature
dimensions are likely to be relevant when representing any
given relationship type, so we will continue in the next sec-
tion by describing a method to determine relevant dimensions
from training data.

IV. METHOD

We seek to recover prominent geometric relationship types
by analyzing the distribution of realistic data and recovering
models for prevalent concepts. Our process begins by ex-
tracting an FGD descriptor, x;, for each pair of objects, ¢,
that occur in the same scene. We construct an unordered
dataset that groups together descriptors of pairs formed by
many different categories of objects. If we were given all
inliers for a concept, fitting its model would be trivial. Like-
wise, given a model, computing inliers is simple. However,
the unsupervised learning problem requires simultaneously
estimating inliers and performing model fitting. The brute-
force approach of attempting all subsets of data is compu-
tationally infeasible. Therefore, we adopt an approach based
on sampling and refinement to robustly approximate useful
concepts. The pseudo-code for the algorithm we describe in
this section is presented in Algorithm 1.

A. Spatial Relationship Model

Our model for a spatial relationship is a parameterized,
relevance-weighted distance function, D,,(z). We employ
the Mahalanobis distance parameterized by a model m
consisting of a mean p and a covariance matrix . We can
compute the distance of a descriptor x under the model as

Do) = /(@ = )= (@ = ) 1)

In order to capture a prominent relationship type, the
model parameters should minimize the distance to a set of
inlier samples, while maximizing the size of the sample set,
and describing a geometric relationship that is as constrained
as possible. This objective is intractable to compute exactly,
SO we propose an approximation algorithm based loosely
on RANSAC, which we will refer to as RANdomized
SEmantic Modeling (RANSEM), for extracting semantically
meaningful concepts from the training data.

B. RANSEM Algorithm

RANSEM is an algorithm for discovering semantic con-
cepts that exist in a dataset. Concepts are extracted iteratively,
and the inliers of each concept are removed sequentially.

Each concept is found using a consensus-search loop
similar to RANSAC. We repeatedly draw &k samples from the
training data, fit a model m; using the samples, evaluate the
inliers of this model and refine the model by refitting using
the full set of inliers. Fitting a model involves computing the
mean and covariance of the given samples. Intuitively, the
covariance X1 of my can be viewed as a hypothesis of the
relevance weights for the feature dimensions. By evaluating
inliers using the distance function D,,,, we identify training
examples whose distances to the mean p; of m; is small
under this relevance weighting. We then refine the model by
fitting a new model, referred to as mo, using the inliers. The
consensus-search loop continues to discover models until an
my model achieves a sufficiently high cluster quality score,
which we will define below. At this point we extract mo,
which we regard as a learned semantic concept, and remove
the inliers of mqy from the training data. We can now start
a new consensus-search loop to seek another concept from
the training data that remains. This is repeated until there is
not enough training examples left to sample from, at which
point we return the set of discovered concepts.

In our implementation, we discard covariance values dur-
ing model fitting, resulting in a diagonal Y. To regularize
¥~1, we find it helpful to compute ®~! defined as

= (D +e) ! )

and use ®~! instead of ¥ ~!. By choosing a positive ¢, we
ensure that elements in diag(®~!) do not receive extremely
high values when elements of diag(X) are close to zero.

C. Computing Model Quality

We assess the quality of a model msy using
Qm, = inliers(msy) - separation(msy) - |71 (3)

where inliers(mg) is the number of inliers of mag,
separation(ms) is the difference in score between the
lowest-scoring inlier and the highest-scoring outlier, and
|[®71||; is the L-1 norm of ®~1. These three factors reward
models that generalize well across the data, that can be
clearly identified without confusion, and that have a tight
geometric constraint. A tighter geometric constraint is repre-
sented by a larger ||®~!||;, and is referred to as being more
specific.

D. Threshold Refinement

Different semantic concepts vary in their prevalence, sep-
aration from surrounding data, and geometric specificity.
Thus, each discovered concept may exhibit different clus-
ter quality scores. To facilitate learning multiple semantic
concepts, we employ a progressively decreasing thresholding
schedule. Let Q* be the threshold, such that a model my is
extracted if Q,,, > Q*. We lower Q™ if the consensus-search
loop does not discover any model after the maximum number
M of iterations. The subsequent consensus-search loop can
then discover less prominent or less specific concepts.

The initial value of Q*, referred to as (Q;ni;, can be
determined in a data-driven manner. Our schedule smoothly



decreases the threshold starting incrementally above the
score of the highest scoring concept we find. An important
free parameter is the maximum number of iterations, and this
roughly determines the final quality of resulting clusters. If
too low a value is set, the threshold decreases quickly and
the algorithm is more likely to emit sub-optimal clusters.
However, as long as a sufficiently large number of iterations
is allowed, we observe stable performance with valuable
concepts being learned in all cases.

Algorithm 1 RANSEM

1: procedure RANSEM

2 Q* — anzt

3 Concepts <— empty list
4: T < training examples
5: while size(T) > k do
6.

7

8

m, I < CONSENSUSSEARCH(Q™, T)
if m = null then decrease Q*

else
9: Append m to Concepts
10: Remove [ from T’
11: end if
12: end while
13: return Concepts

14: end procedure
15: procedure CONSENSUSSEARCH(Q™, T)

16: loop at most M times

17: S < Sample k examples from 7'
18: m1 < mean(S), cov(S)

19: I, + inliers of m; under D,,,
20: ma < mean(I1), cov(ly)

21: I5 < inliers of mg under Dy,
22: if Qm, > Q" then return ms, I>
23: end if

24: end loop

25: return null, null

26: end procedure

V. DATA

NYUv2 [14] is a state-of-the-art dataset containing Kinect
scans of real 3D homes. We extended this dataset by an-
notating oriented rectangular bounding volumes of several
kinds of household objects, and labeling each pair of co-
occurring objects with either left, right, on, supporting or
none. The label none is given to object pairs for which the
four semantic concepts are not applicable. We chose these
four concepts because they are the most prevalent in the
dataset, as perceived by the human annotator. In bedroom
scenes, we annotated pillow, bed, night stand, dresser, tv, tv
stand, desk, and monitor. In kitchen scenes, our labels were
stove, dishwasher, and microwave. We annotated all bedroom
and kitchen scenes in the dataset.

Table I shows the number of examples of each semantic
label in the dataset. On and supporting relationships are
primarily demonstrated by monitors and desks, pillows and
beds, tvs and dressers, and tvs and night stands. Left and
right relationships can be primarily seen in the relationships
bed-night stand, pillow-pillow, and combinations of fridges,
microwaves, dishwashers, and stoves.

TABLE I
SEMANTIC LABEL STATISTICS

[ [[ Teft | right | supporting [ on [ none [[ total |
[Coccurrences || 441 | 446 | 285 | 285 | 1121 [[ 2578 |

TABLE II
AVERAGE PRECISION

[ [[ Teft | right | supporting [ on [[ overall |

RANSEM
RANSEM Euclidean
RANSEM w/o disc . . . . .
K-means .634 | 706 976 .993 827

K-means w/o disc .661 .608 125 144 .385

VI. EVALUATION

Due to their unsupervised nature, our methods have never
seen the English labels for concepts, such as on. Rather,
they are performing concept discovery. In order to evaluate
the output of such unsupervised models, the typical practice
is to first seek correlation between the discovered models
and the labeled concepts in the ground truth. For example,
we may find that our system’s first model almost always
gives a strong score for data items that a human has labeled
on. We implement this concept translation as a maximal
matching between learned models and ground truth labels.
It is important that we restrict the number of concepts
generated automatically to be equal to the number of ground
truth labels, to avoid introducing an unfair bias through the
matching process. For RANSEM, we achieve this by keeping
only the n highest-scoring discovered concepts, where n is
the number of ground truth labels. In our case, there are four
ground truth labels: left, right, on, and supporting. Note that
RANSEM may discover additional concepts such as in front
of, but we expect them to receive lower scores than the four
most prominent concepts.

We compare the performance of different variants of
RANSEM against a baseline unsupervised concept discovery
method, K-means. The same evaluation procedure is applied
to all methods. The results of each method are matched with
the ground truth labels. The scores that the method assigns to
each test data element can then be thought of as a prediction
of that pair’s relationship type. Precision-recall statistics are
generated to evaluate the model’s classification performance
on each of our four relationship concepts.

VII. RESULTS
A. Quantitative Results

Precision-recall curves for RANSEM and K-means are
shown in Figure 3. We evaluate the proposed RANSEM
algorithm, along with two variants to assess the impact of
using Euclidean distances instead of Mahalanobis distances,
and omitting discrete descriptors. We also run two versions of
K-means, one using discrete features and the other without.
Table II shows the average precision of each method.

The results show that the models learned by RANSEM
better match with human labelings of each relationship
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Fig. 3. Precision-recall curves for the semantic concepts left, right, supporting, and on. We show the performance of the RANSEM algorithm, RANSEM
using Euclidean distances instead of Mahalanobis distances (RANSEM Euclidean), RANSEM without using discrete features (RANSEM w/o disc), K-means,
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Examples of true positives, true negatives, false positives and false negatives at precision = 0.85 for the left model learned by RANSEM. Red

wireframes are the anchor objects and the green wireframes are the follower objects.

than the clusters generated by K-means. Both methods
perform quite strongly on the on and supporting relations,
demonstrating that there was sufficient separation in the data
for each of those concepts to appear even without feature
relevance selection. For left and right, K-means performs
significantly worse than our method since separation is only
evident when the correct features are selected. We also
observe that RANSEM using Euclidean distances shows
worse performance than K-means. This is because when
using Euclidean distances, the various semantic concepts
are less separable, causing the quality metric to be based
solely on the number of inliers. This often leads to less
meaningful, over-sized clusters. K-means is more robust to
this since it performs expectation maximization over all four
clusters simultaneously. The use of discrete features appears
to be crucial for both RANSEM and K-means. We observe
that without discrete features, RANSEM cannot find a clear
separation between inliers and outliers.

The weighting of dimensions by their relevance is clearly
an important aspect of RANSEM. Removing this compo-

nent causes a drop in performance across the board. Using
Euclidean distances leads to a more challenging data dis-
tribution, so the algorithm is less able to effectively find
meaningful concepts.

B. Qualitative Results

Figure 4 illustrates several correct and incorrect classi-
fications of our model’s predictions of left pairs. When
objects fall within the 5-sided infinite volume defined by the
left side of the anchor object and its rectangular hull, they
are confidently and correctly predicted by this model. Our
method produces false negatives on objects that a human
would still label left, in spite of several of the corners or
surfaces extending outside the bounds of this volume. Our
analysis indicates that this was a relatively uncommon trend
in the data, and that these instances more closely resemble
pairs from irrelevant relationships. So, the unsupervised
method did not group them into the concept. Our method
does correctly disregard objects that face each other and
those in front of one another. These fall far from the learned



TABLE III
FEATURE DIMENSION WEIGHTING

left on
m1 [ ma | m1 [ ma

left-left-x
left-right-x
right-left-x
right-right-x
top-top-y
top-bottom-y
bottom-top-y
bottom-bottom-y
front-front-z
front-back-z
back-front-z
back-back-z
left-left-x
left-right-x
right-left-x
right-right-x
top-top-y
top-bottom-y
bottom-top-y
bottom-bottom-y
front-front-z
front-back-z
back-front-z
back-back-z

Continuous | y

Discrete y

model and are assigned a large weighted distance.

In addition to improving performance, relevant feature
selection is an important aspect in making learned models
interpretable by humans. Table III visualizes the weights for
the learned models of left and on. The magnitude of the
weights is illustrated by the darkness of the corresponding
cell in the table. We show this for both m; learned using the
sample, and mo learned from the inliers. It is interesting to
note that the refitting to inliers generally reduces the weights
given to continuous dimensions. This can be understood
based upon the fact that a small sample of data is likely
to accidentally align in non-meaningful subspaces (e.g., be
co-linear or co-planar within 3D space). Our approach is able
to correct this during its refinement step.

VIII. CONCLUSIONS

In this paper we have described and evaluated a method for
learning object-to-object spatial relationships from publicly
available Kinect data with 3D object annotations, but without
annotations of the relationship types. We show that an
unsupervised method is able to automatically output concepts
which correlate well with a human’s description. Our method
uses intuitive geometric features extracted from the relative
pose of the objects and their shapes. We model relationships
with a form that encourages precise geometric descriptions.
Model parameters are determined by sampling-based ap-
proximate search for prominent concepts occurring in the
data. Our results demonstrate that our system’s concepts
correlate with human labels more strongly than a base-line
approach, and validate the importance of using relevance-
weighted distance models.

There are many outstanding problems remaining in the
area of learning spatial relationships. In complex scenes,
objects are often found in piles, stacked in shelves and
combined to form complex groupings. The details of these
relations are often important for a robot to understand. For
example, when cleaning a kitchen, one cannot simply leave
objects in open space on the counter, but rather they must be
put in their assigned places in the crowded shelves. Due to
its unsupervised learning nature, our method is well suited to
scaling to such complex scenes. Rather than requiring tedious
programming effort, we would simply need datasets whose
annotated objects exhibit semantically meaningful concepts,
which is becoming increasingly available with the Kinect and
online labelers.
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