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1 Introduction

The natural world is a complex dynamic system which humans have only begun
to understand in a quantitative way. How does flooding in urban areas impact the
ecosystem of a nearby coastal reef? Does the texture of the underside of sea ice
dictate microbial life? How is phytoplankton in Arctic lakes effected by climate
change? These are just a few samples of the types of questions that scientists are
attempting to answer. In this thesis proposal, I introduce my plans to develop tools
for improving our understanding of the world. They broadly break down into two
parts: 1) learn models based on existing data that explain variation over space and
time and 2) create robot behaviours based on these models which efficiently collect
meaningful new data points in a cost-effective way.

1.1 Motivation

Mobile scientific sampling robots, such as those depicted in Figure 1, are regularly
deployed to harsh environments to gather data for scientific discovery and monitoring.
These robots are equipped with specialized sensors travel which collect data as the
robot travels to various parts of a survey region collecting in-situ (local) observations
of a phenomenon which is changing over a spatial and/or temporal scale.
Despite their accomplishments and sophistication, the "autonomous" robots in Figure
1 each require an entire team of professional engineers and technicians to help plan
and prioritize their activity (Silver, 2010). Though truly autonomous robots have the
opportunity to autonomously fill important holes in scientific exploration and data
acquisition, at this time most autonomous scientific mobile vehicles only perform
tasks under the watchful eye of experts. Today’s robots are hindered by their lack
of understanding of global factors which impact both the phenomenon that they are

(a) Extraterrestrial Sampling (b) Sampling under Sea Ice (c) Sampling a Hurricane

Figure 1: This panel depicts various scientific observation robots. The images are
roughly ordered by the degree to which they rely on human operators for decision
making. In Fig 1a, we see an example of Curiosity’s semi-autonomous exploration.
Scientists back on earth choose specified waypoints of interest (marked in green
in the figure) and Curiosity chooses a safe path through the waypoints (Webster,
2013). In Fig 1b, the Nereid Under-Ice (NUI) (Jakuba, 2014) vehicle is depicted
performing a teleoperated mapping mission under a shifting pack of ice. Robots
working in under-ice environments require advanced and reliable reasoning and
localization capabilities so that they are able to perform tasks far from the base
station ship and still return safely if/when the fiber optic tethered connection to the
ship is lost. In Figure 1c, an unmanned aircraft is teleopererated by human experts
in an adaptive manner to collect data during Hurricane Michael (JPL, 2016). This
image depicts temperature of the atmosphere as collected by the drone on top of data
from ground-based radar.
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Figure 2: Major contributions of this thesis and publication where applicable. Sec-
tion 4.2 discusses results in shades of blue and Section 4.1 highlights progress in
turquoise.

trying to observe and the dynamic forces in the world which inhibit their ability to
collect data efficiently (such as ocean currents or tides). As a result of the expense
associated with modern robot supervision, exploration robots tend to only take on
roles which are much too costly, tedious, and/or dangerous for humans.
Less sophisticated robots, such as those that handle boxes in warehouses or control
row-driving tractors, can interact with domain experts rather than specially trained
engineers, but these robots are usually confined to relatively controlled (structured)
environments and specific tasks. Machines that do interact with non-expert people in
human spaces have historically taken on tasks which have a low sensitivity to failure
such as vacuum cleaning or lawn mowing.

1.2 Contribution

My research is concerned with developing intelligent, but low-cost sampling systems
which allow long-term and ubiquitous data collection of the (primarily natural) world.
One of the chief barriers preventing even expensive modern robots from being fielded
outside of controlled environments without a team of experts is their inability to
reason in uncertain or unstructured environments. Structured environments are those
in which the space or environment is clearly defined, usually with simple shapes and
controlled lighting. However, most of the real world is unstructured, with an infinite
number of unknown and dynamic variables.
My research seeks to empower artificial systems and scientists alike with strong
models of the natural world, so that their environment appears more structured,
thanks to greater context. I propose several techniques for improving autonomy
in robots by building and using models which enable agents to make predictions
about the unobserved environment, allowing our systems effectively work in teams,
explore an unknown region, and exploit predictable spaces. A substantial part of my
work is motivated by the need to inexpensively collect samples with high spatial and
temporal resolution from Canadian lakes. This mostly applied work in distributed
scientific sampling is discussed in detail in Section 4.2. In Section 4.1, I present early
results from my ongoing research in model-based approaches for solving high-level
tasks. Finally, in Section 5, an outline for future work is presented.
In the following section, I provide a brief overview of how robots make decisions.
This is followed by a discussion of environment models in Section 2.3 and challenges
in Section 3. A base background knowledge in decision making (Thrun et al., 2005;
Sutton and Barto, 1998), robotic systems (Dudek and Jenkin, 2010), and machine
learning (Bishop, 2006; Goodfellow et al., 2016) is assumed and can be found in the
included citations.
I realize that the terms model and environment are overloaded in the context of
this document. For my purposes, a model is a framework that an agent can use
to predict how the the environment around it will change, taking into account the
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Figure 3: A Robot interacts with its environment through a series of state observa-
tions and actions.

agent’s own actions. Although we seek to build robots which collect data in the
natural environment (phytoplankton, wind, etc), for the purpose of this document,
environment will refer to the world apart from the robot itself.

2 Robot Decision-Making

Robots interact with the world around them by making observations of the environ-
ment through sensors, and by taking control actions which change the current state
of the environment. Robots must combine observations and measurements from
multiple sources over time and space in a process called state estimation, where a
robot’s state is defined as the collection of all parameters about the robot and its
environment that may influence its future, including the robot’s pose (location and
orientation). Importantly, an autonomous mobile robot must be able to interpret
its own sensors to orient itself in the world and to make navigation or interaction
decisions.
Most modern robotic agents operate in a sequential decision making environment
in which they execute an action based on the best information available at the time
to achieve some goal (see Figure 3). A Markov Decision Process (MDP) (Bellman,
1957) provides us with a convenient mathematical model for understanding decision
making in environments in which the agent’s actions only partly influence its future.
An MDP is a discrete process (s, a, r, s′) in which at each time step, t, an agent
observes a state, s, chooses some action, a, and incurs a reward, r, thus progressing
to the next state, s′.
Agents select actions according to their policy, π, defines a robots way of behaving
at a particular point in time. Policies are, broadly, one of two categories. The first
utilizes engineered reactions to sensory observations and does not change its policy
based on experience. The second attempts to learn appropriate reactions based
on experience. Furthermore, decision making approaches can be viewed as either
reactive (model-free) or deliberative (model-based). Reactive agents choose actions
only in response to observed states, whereas model-based or deliberative approaches
reference some model of the world when selecting an action.

2.1 Reactive Methods

Reactive agents make decisions based on a state observation by referring to either a
pre-programmed state-action sequence or by referring to a learned controller. Simple
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engineered reactive agents may convert sensor observations or their location into
motion vectors for avoiding obstacles or moving to a specified goal location (Khatib,
1985; Rivera et al., 1986).
Reactive agents that learn fall under a class of algorithms known as model-free
reinforcement learning. In this paradigm, an agent will sample actions according to
an internal policy, and then adjust the policy to optimize for reward (Bellman, 1957).
Reinforcement learning methods are theoretically advantageous because they make
minimal assumptions about the world and are usually fast at decision time. Large
advances in performance have been demonstrated by combining deep learning meth-
ods with the value-based Q-learning approach, such as human-level performance on
a suite of Atari (Bellemare et al., 2012) games in (Mnih et al.). Similarly, policy-
gradient based reinforcement learning approaches have had remarkable success in
distributed learning settings and continuous control (Mnih et al., 2016).

2.2 Deliberative Methods

Figure 4: Relationship between learning, planning, decision making from (Sutton
and Barto, 1998)

Deliberative agents perform forward search from the current state of the MDP to
find actions (LaValle, 2006). This forward search is typically performed on-line,
referencing the agent’s current model of its future. This model may be the true future
if available as in the case of many games. However, the model is often estimated
when no exact future is available as in the case of most robotic applications.
Historically, robot motion planning has been dominated by graph based search
algorithms. These approaches usually require a simplified costmap model of the
robot’s environment so that the robot can search for a path towards a goal. A
costmap is constructed by quantizing the environment into cells, each classified by
its content. Roadmap planning algorithms such as a Visibility Graph or Voronoi
work by discretizing a given map into an undirectected graph where nodes are free
space, and then searching that graph to find an optimal path.
In many real systems, a reliable model of the entire environment to discretize is often
not available. Even if it is available, it may be inaccurate because of sensing errors
or dynamic features. To address this, practitioners often utilize on-line algorithms
which allow robots to update their plan as they improve their model of the world
through observations. These online algorithms may be graph-based as in the case of
D* (Stentz, 1997) or sampling based like Probabilistic Roadmap (PRM) (Kavraki
et al., 1996) and Rapidly-exploring Random Trees (RRT) (Lavalle, 1998). One
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important limitation of search methods is that they may be slow to run in real time
in complex search spaces.
Monte-Carlo Tree Search (MCTS) (Browne and Powley, 2012) with Upper Confi-
dence Bounds for Trees (UCT) (Kocsis and Szepesvári, 2006) is a popular ((Silver
et al., 2016; Guo et al., 2014; Bellemare et al., 2012; Lipovetzky et al., 2015))
search method which incorporates Upper Confidence Bounds (UCB) from the bandit
literature with search to handle exploration/exploitation tradeoff. Given an accurate
representation of the future and sufficient time to compute, MCTS performs well
(Pepels et al., 2014), even when faced with large state or action spaces. MCTS works
by rolling out many sequences of actions on possible future scenarios to acquire an
approximate (Monte Carlo) estimate of the value of taking a specific action from a
particular state.
In planning, goals and hazards are typically specified ahead of deployment time,
however one could see how it might be difficult (and expensive) to enumerate every
possible failure case. We might want agents which learn, improving performance
over time. We can utilize similar techniques from model-free reinforcement learning
to learn both a model of the world and a policy which allows an agent to learn
how to act. In model-based reinforcement learning, agents are generally able to
improve sample efficiency over model-free methods by performing at least some
of the agent’s training within its learned model (Deisenroth and Rasmussen, 2011;
Sutton, 1991). One of the earlier architectures which integrated learning, planning,
and reacting into an agent is Dyna, which was introduced in 1991 (Sutton, 1991)
(see Figure 4). In the Dyna architecture, the agent builds a one-step action model of
its world and uses this world model to train a reactive controller. At decision time, it
uses the reactive controller to make decisions, but incorporates the experience into
its model.
While model-free decision-making methods can fail in ways that are hard to interpret,
model-based approaches move part of the problem to an interpretable space where
failures in modeling the environment itself can be analyzed more directly. However,
modeling high-dimensional observational data with complex temporal dynamics is a
challenging task, and incorrect models can result in significant errors.

2.3 Models

In my research, I have mostly utilized existing deliberative decision-making methods
paired with strong models of the environment for model-based planning or rein-
forcement learning. As the model of the future improves (Oh et al., 2015), agent
performance also improves.
A model of the environment is anything that an agent can use to predict how the
environment will respond from a given state and action. We focus on models which
predict the s′, given the s, and a (minimizing Equation 1), though models may also
predict reward or value of a state.∑

t

||f(st, at)− s′t||2 (1)

If a robot is interacting in an environment in which dynamics are well known, we
can give the agent access to known models for predicting the future. This is the case
in many games (such as chess), where rules of the game form a model which can
be used play out possible futures. We can also employ a similar technique when
the laws of physics describe an agent’s world. Physics models have been used with
robots utilizing wind for transport (Douglas Luders et al., 2016) and trying to find
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phenomena such as radiation sources (Rolf et al., 2018). In Section 4.2, I’ll discuss
our project which utilizes physics equations to predict robot sensor trajectories in a
marine flowfield.
However, in many robotics applications, a full physics or rule-based model is not
available. In this case, we can attempt to learn a model of the environment which can
be utilized by the agent to imagine future scenarios for use in decision making. There
has never been more data available from which to develop models which describe
how the world works. Although electronic sensors have existed for decades, recent
developments in lightweight computers, sensors, and batteries coupled with reliable
wireless communication and localization schemes allow us to gather information
from environments that were previously seen as too costly or risky to instrument.
Consequently, we have an incredible amount of data which describes human (Lane
et al., 2010), built (Zanella et al., 2014), and natural (Hart and Martinez, 2006;
Villarini et al.) dynamics and distributions over space and time. In addition, artificial
worlds developed from real observations of human environments (Xia et al., 2018),
simulation environments based on the natural world (Manderson and Dudek, 2018),
and computer games (Bellemare et al., 2012) allow artificial agents to gain unlimited,
risk-free experience that may be transferable to real robots.
Agents which learn a model by interacting with the environment usually follow the
following iterative steps to acquire and use a model for planning (Silver):

1. Run base policy to collect trajectory, s, a, s′t
2. Learn dynamics model f(s, a) to minimize model error (Equation 1)
3. Utilize deliberative or reactive policy to select action
4. Execute single action, observe s′

5. Add (s, a, s′) to dynamics model dataset

The model may be learned independent of the agent as in (Ha and Schmidhuber,
2018) and (Hansen et al., 2018a) or the agent may have to take steps to properly
explore then environment in order to build an environment model. We’ll discuss
both approaches Section 4.1.

2.3.1 Learned Models

Density estimation is core problem in machine learning and is a key component
of learning models for decision-making agents. In the following few paragraphs,
I introduce several models that I’ve used and that will be referenced later in the
document.
The type of model chosen to learn a model varies based on the task. I have focused
much of my work on learning latent-variable generative models of environments. A
key insight of latent variable models is that there is some underlying representation
which can explain features or dynamics in a larger observed state. Latent environment
models can be learned in an unsupervised manner to provide agents with a so-called
imagination that can be queried when preparing to act in the true environment
without predicting full future observations.
In autoencoders, a bottleneck in the neural network forces the system to learn
a concise representation from which to reconstruct the input. Ideally, the latent
variables produced in the bottleneck will represent a compressed spatial and temporal
representation of the environment which may be useful for our agents.
The Variational Autoencoder (VAE) (Kingma and Welling, 2013; Rezende et al.,
2014) is an interpretation of an autoencoder as a graphical model where the archi-
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Figure 5: VQ-VAE optimizes a discrete embedding space by moving embedding
centers, ei with respect to the output from the encoder, ze(x). This figure is a
modified version of Figure 1 in van den Oord et al. (2017b).

tecture introduces the concept of a prior. The network trains by gradient descent
by utilizing the reparameterization trick to maximize the lower bound on the log-
likelihood from samples from the posterior. VAEs are popular in part because the
ease of working with the Gaussian prior has enabled a number of follow-up applica-
tions. One common failure of VAEs is mode collapse which occurs when the latent
representation fails to capture useful information in latent space. This is especially
a concern when VAEs are paired with expressive autoregressive decoders such as
(van den Oord et al., 2016b). There have been several research threads which attempt
to solve mode collapse including (Alemi et al., 2017; Gulrajani et al., 2016; van den
Oord et al., 2017b; Graves et al., 2018) and I’ll detail of these models that I have
used in the following paragraphs.
The Vector Quantised Variational Autoencoder (VQ-VAE) model is one of the
extensions to the VAE which helps avoid mode collapse. VQ-VAE transforms
input into a discrete latent representation utilizing Vector Quantization (VQ) (Gray,
1984), rather than assuming an explicit density as in VAEs. The VQ-VAE employs
a three-part loss described in Equation 3. The first component of the loss is the
reconstruction loss, which utilizes a straight-through gradient estimate. The second
and third terms in the loss function seeks to learn better positions of the embedding
vectors ei with respect to the encoder output, ze(x) (as depicted in Figure 5). The
VQ-VAE does not have an explicit prior which can be sampled, however a prior may
be learned after training. This model architecture has proven data-efficient, robust
to mode-collapse, and useful for learning models for decision-making agents. The
discrete latent space is nice because it allows us to utilize search-based agents with
rollouts of the future as in (Hansen et al., 2018a).
Associative Compression Networks (Graves et al., 2018) are a form of variational
autoencoders in which the prior distribution used to model each code in the latent
space is conditioned on a similar code from the dataset, forming a non-parametric
prior. This coding scheme allows the prior to account for local variations in the latent
space in a flexible way, which helps create information-dense codes and prevents
mode-collapse while preserving neighborhoods. The loss is described by Equation
4.

LV AE(x) = KL(q(z|x)||p(z)− E[log r(x|z)] (2)
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LV QV AE(x) = log p(x|zq(x)) + ||sg[ze(x)]− e||22 + β||ze(x)− sg[e]||22 (3)

LACN(x) = E[KL(q(z|x)||p(z|ĉ)]− E[log r(x|z)] (4)

Autoregressive models like (Larochelle and Murray, 2011; Germain et al., 2015; van
den Oord et al., 2016) and (van den Oord et al., 2016b) improved the state of the
art having have proven that they are capable of estimating high-dimensional data
such as raw images (van den Oord et al., 2016; van den Oord et al., 2016b; Salimans
et al., 2017), audio (van den Oord et al., 2016a, 2017a), and video (Kalchbrenner
et al., 2016). The autoregressive technique utilizes the chain rule to reinterpret
the joint distribution as an exact product of conditional distributions (see Equation
5). Combined with clever masking, these conditional distributions can be found
efficiently at train time, though the chain must be sampled sequentially at evaluation,
resulting in slow generation. One key drawback, is that there is no latent variable in
these models, however, they can be combined with encoders which produce latent
variables such as VQ-VAE and ACN.

p(x) = p(x0, x1, x2, ...xn)

p(x) = p(x0)· (x0|x1)· (x2|x0, x1) · ...p(xn|xn−1, ..., x2, x1, x0)

p(x) =
n2∏
i=1

p(xi|x1, xi−1)
(5)

A recurrent neural network (RNN) (Elman, 1990) is a model that is particularly
useful for modeling sequential data. The network has recurrent connections which
allow it to retain a "memory" across multiple inputs. This style of recurrent model is
also known as a state space model or dynamical system. Long short-term memory
(Hochreiter and Schmidhuber, 1997) are RNN-style models which improve gradient
propagation by adding additional gates to the RNN structure which effectively allow
the network to manage information flow.
The non-parametric Gaussian Process (GP) (Rasmussen, 2006) is often employed
for modeling spatiotemporal processes (Singh et al., 2010; Zhao et al., 2016; Kim
et al., 2011; Reece et al., 2011) and in our own work in (Hansen and Dudek, 2018;
Hansen et al., 2018b). GPs represent training data as a distribution over a family of
functions. At evaluation time, the GP measures the similarity between all data points
using a kernel function. Gaussian Processes are data efficient and provide a measure
of uncertainty, but the standard implementation has difficulty handling large datasets
(n > 104), as it requires O(n3) computations and O(n2) storage for n training points
(Rasmussen, 2006), though there has been work to scale the technique exactly to
larger datasets (n = 10e6) (Wang et al., 2019). Recent extensions combine GPs with
neural methods (Vinyals et al., 2016; Garnelo et al., 2018), attempting to combine
the positives of GPs such as rapid adaptation to new data and uncertainty with the
computational efficiency at evaluation of neural networks.
Modeling is a particularly active area of research and thus there are many new
model architectures worth considering in model-based decision making. Some
which may be particularly applicable include (Li et al., 2018) which enables high-
performance super resolution as well as transformations (night to day) which may
enable agent environment transfer. Transformer models (Vaswani et al., 2017) which
utilize attention mechanisms rather than RNN-style recurrence have shown good
performance in sequential data. My workflow is well-situated to adapt to new models
as performance improves.
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3 Challenges

This section provides a general background on a subset of the challenges faced in
developing decision making agents.

3.1 Imperfect Observations

Real-world systems are plagued by imperfect or underactuated mechanics and
perception systems that provide limited insight into their environment. Determining
a robot’s location in their environment and relationship to other objects is often
a difficult problem. The absolute position of robots operating outdoors can be
found with sensors which interpret messages from known remote locations such
as Global Positioning System (GPS) receivers or Ultra-Short Baseline (USBL)
transceivers. Robots may find their relative position by systematically keeping
track of their own movement using a combination of observational sensors such as
cameras, inertial measurement units (IMUs), or tachometers and algorithms like
dead-reckoning (Dudek and Jenkin, 2010), simultaneous localization and mapping
(SLAM) (Davison et al., 2007), visual odometry (VO) (Nister et al., 2004).
In addition to localization and observation sensors, scientific mapping robots are
equipped with a combination of sensors that allow them to observe phenomena in the
environment, such as fluorometers, sonars, cameras, or thermometers. Robots may
need to interact with their surroundings by collecting samples, probing the earth,
or deploying additional independent measurement devices. A major challenge to
measurement is the presence of noise or error in sensor observations.
These systems must make decisions in a limited decision time due to timing con-
straints in physical systems, usually with only the computation that they carry and
power with batteries.
The paradigm introduced in the MDP of "the future is independent of the past given
the present" does not hold in the presence in real-life sensor limitations. This means
robots often operates in a Partially Observed MDP (POMDP) as the full state is not
observed.

3.2 Sample Efficiency

Despite high-profile success, the use of model-free approaches for physical robots
has been relatively limited due to their sample inefficiency. Training robots in
their target environments requires physical interactions that are often slow, resource
intensive, and often dangerous for the robots as well as other inhabitants of the
environment.
Two popular approaches to reducing the number of samples needed to train an
agent are transfer learning and imitation learning. Typically, in transfer learning
regimes, the agent learns how to interact well in a world in which it is safe and
easy to gather experience (usually a simulator), and then finds a way to leverage
this knowledge in a target environment where it is usually much more expensive to
gather experience (Xia et al., 2018) (Taylor and Stone, 2009). In imitation learning
frameworks (Schaal, 1999; Abbeel and Ng, 2005; Ratliff et al., 2009; Ross et al.,
2011), the agent leverages a few examples from an expert to begin learning from a
fairly good policy.
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3.3 Exploration

A key problem in decision-making is that it can be difficult to observe the entire
state space needed to make good decisions. An agent needs to exploit what it
already knows in order to succeed in maximizing its objective, but must explore
to discover actions which may lead to an even greater reward. Historically, many
successful reinforcement learning approaches have used an ε-greedy approach to
exploration, taking random actions some percentage of the time during training
rather than following the current policy. Though unbiased, this approach does not
induce temporally-extended exploration and is data inefficient.
Recent work has worked to incentivize agent exploration defining intrinsic rewards
with pseudo-counts that rewards state-action pairs which have been experienced
infrequently (Bellemare et al., 2016). Osband et. al utilizes bootstrapped agents to
achieve deep exploration in (Osband et al., 2016). This work is extended in (Osband
et al., 2018) to include random prior functions for each bootstrapped agent, achieving
high uncertainty in unfamiliar states which can be used to drive exploration.

4 Research Direction

My research efforts seek to improve robot decision making with the ultimate goal of
improving autonomy in scientific sampling tasks. This work builds on techniques for
model-based decision making using modern approaches for learning environment
models. In Section 4.1, I present related and motivating research as well as my own
work on building models for agents in simulated environments. In Section 4.2, I
introduce a scientific sampling problem that is a major motivating problem for my
thesis. This project relies on learning an environment model to facilitate sensor
transport for low-cost persistent sampling in marine environments.

4.1 Model-Based Decision Making Agents

In this line of work, we consider learning unsupervised models of the future in
high-dimensional dynamic environments for use by a decision-making agent.

4.1.1 Related and Motivating Work

Much of the progress in decision-making agents in recent years has come from
model-free reinforcement learning approaches, which have learned effective policies
in complex tasks, even in cases where the observational space is large. This progress
has largely been attributed to employing deep neural network architectures similar
to those used in machine vision tasks such as classification (Krizhevsky et al., 2017),
detection (Ren et al., 2015), segmentation (Ronneberger et al., 2015). However,
modern model-free methods require many interactions between the agent and its
environment, making this approach infeasible for many robotics applications. Model-
based approaches, hold the promise of improving efficiency of learning agents, as
they may learn actions in a simulated model of their environment. However, until
recently, most model-based approaches have been held back by poorly-modeled
environments. As learned environment models improve, the p0erformance of model-
based decision making agents will also progress.
Planning is a powerful approach to sequential decision making problems where the
environment dynamics are known. The success of the model-based AlphaGo (Silver
et al., 2016) and AlphaGoZero (Silver et al., 2017) in the large state-space, sparse-
reward game of Go has inspired a bevy of work (H. S. Segler et al., 2017; Anthony
et al., 2017; Guez et al., 2018; ?) (including our own (Hansen et al., 2018a)) in
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Figure 6: VQ-VAE+PCNN model diagram shown predicting 3 states into the future
(shown in red), conditioned on 4 past z states (purple) on Freeway.

model-based decision making where neural networks are used in coordination with
traditional search for decision making. In AlphaZero, the rules of the game provide
a perfect model by which to train a two-headed network which takes the current
game state as input and chooses actions based on an approximation of Monte-Carlo
Tree Search.
The 2014 paper (Guo et al., 2014) showed offline MCTS over RAM representations
of game state in Atari (Bellemare et al., 2012) out-performs learned policies without
access to the true future. However, outside of games, most environment dynamics are
not given. Recent work has paired learned models of the environment with planning
over a learned latent space (?) or learning agents (Kaiser et al., 2019). When making
decisions in unknown environments, the agent needs to experience the environment
in order to build a model. In (Kaiser et al., 2019), a a learning agent with a learned
model of observed Atari frames, achieves human-level performance in with <100K
interactions with the environment (<2 hours of game play). This result is in stark
contrast to the many millions of steps needed by the best model-free approaches to
achieve similar performance.
Key problems on planning on learned environments are those related to model
inaccuracy. These include accumulating errors as the imagined rollout is farther
from the observed state. May fail to capture many possible futures and an agent can
learn confident policies in regions which are actually outside the training distribution
of the model.
Much work has shown that learning a dynamics model from a compressed latent
space can improve efficiency in reinforcement learning agents (Oh et al., 2015; Ha
and Schmidhuber, 2018; Finn et al., 2016; Buesing et al., 2018). In (Finn and Levine,
2017), the authors develop a method for combining deep action-conditioned video
prediction models with model-predictive control that uses entirely unlabeled training
data to enable a real robot to perform manipulation. In (Ha and Schmidhuber, 2018),
learn a lightweight controller which interprets the latent representation of the current
state from a VAE, zt and the action-conditioned estimate of the future, zt+1 from
an RNN. The models int this case are trained from random rollouts of the agent. In
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(a) Observed State t14 (b) True t14+13 (c) Estimate t14+13 (d) Error t14+13

Figure 7: This panel depicts an example of our model rolled out 13 time steps in
the future in the Atari Freeway game (Bellemare et al., 2012). The yellow pixels
depict the agent position. This yellow pixel is the true position in Figure 7a and is
the imagined states in Figures 7b and 7c. Error in our imagined state from Figure 7c
is shown in Figure 7d. This error is represented as false negatives in red and false
positives in blue.

I2A, (Racanière et al., 2017), the agent’s policy is informed by the outputs of both
a model-free value estimate and Monte-Carlo estimate from a rollout on a learned
model. This dual approach allows the agent learn to interpret its imperfect internal
model to construct implicit plans in new ways.

4.1.2 Progress to Date

In preliminary results (Hansen et al., 2018a), we demonstrate the utility of using a
two-stage pipeline to train a forward model over latent representations of an action-
independent environment. We utilize a VQ-VAE (van den Oord et al., 2017b) to
learn discrete representations and pair this with a a conditional gated PixelCNN
(van den Oord et al., 2016b) to predict one-step ahead z representations of sequential
frames when conditioned on previous z representations. Our VQ-VAE configuration
compresses an input size from our state observation of 48 × 48 × 1 down to a
Z space of 6 × 6 × 1. This concise representation reduces the time needed for
sequential generation by the autoregressive model, bringing our agent closer to
real-time decision making.
To introduce Markovian conditions, our conditional PixelCNN is fed a spatial
conditioning map of 4 past z encodings causing it to learn a model corresponding to
p(zti,j |zt<i,<j

, zt−1, zt−2, zt−3, zt−4). Each dimension (i, j) of Zt is conditioned on
all valid dimensions relative to the current position via autoregressive masking and
also on the previous 4 frames which are fed to the model by a spatial conditioning
map. Combined with the previously trained VQ-VAE decoder this results in a model
which generates 1 frame ahead, given 4 previous frames. It is possible to generate
an arbitrary number of frames forward given an initial 4 frames, by chaining 1
step generations though we expect results to degrade as forward trajectory lengths
increase. We illustrate this structure in Figure 6. We tested this forward-model with
an agent utilizing MCTS for action selection and demonstrated that it performed
well compared to MCTS agents which had access to the true fully-observed future
in a dynamic environment.
A key component which made the previous approach computationally feasible is
that the environment we tested on was not action conditional, meaning dynamics
in the world continued regardless of what actions are chosen by the agent in its
rollouts. This means that generated future frames were be shared across all rollouts
in MCTS, greatly reducing the overall cost of running the autoregressive model.
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Combined with the speed improvements from generating in a compressed space
given by VQ-VAE, forward generation was accomplished in reasonable time. This
action-independence is the case in many scientific sampling environments which
we care about. For instance an autonomous underwater vehicle will not have much
effect on the ocean current or coral reef distributions and can use future predictions
about the environment to make reasonable sampling decisions.

4.1.3 Future Work

Current and future work is centered around extending initial results to action-
conditional environments. Complex interactive environments require exploration to
fully model the state-space. As discussed previously, our current approach is likely
too slow to realistically be realized in interactive environments. In addition, we need
a model which can also estimate rewards and end-of-life scenarios. The bullet points
below enumerate the tasks required for building a full action-conditional learning
agent.

• I have incorporated ideas from (Osband et al., 2018) for building models
in environments which require exploration to observe the state space. Ex-
ploration didn’t really effect our agent in the simple environment shown in
Figure 6 as the state space was fully observed and we used simple rules to
indicate reward to the planning agent. An agent trained by reinforcement
learning will need to experience different factors in the environment in order
for its model to depict them accurately.

• Although we saw very good performance from VQ-VAE reconstructions, the
latent space in this model does not have implicit ordering, effectively serving
as a learned lookup-table in latent space. Knowing neighbors in the latent
space such as in VAEs might be useful for imagining future scenarios. My
ongoing work seeks to incorporate ideas from ACN into a VQ-VAE style
model for encouraging latents to have meaningful neighbors.

• Ultimately, I would like to examine how well learned environment models
can be transferred to related but different environments. Future work will
involve transferring to robotic tasks, such as navigation in different buildings
in (Xia et al., 2018).

Ideas and methodologies from this section are extended to a scientific sampling
environments in the next section.

4.2 Flowfield Modeling for Low-Cost Persistent Autonomous Sampling

A significant motivating problem in my work has been that of efficiently collecting
samples necessary to gain understanding of spatiotemporal data phenomena in bodies
of water, such as pollutants, coral, or algae. The process of gathering in-situ data
from a spatiotemporal marine field is an expensive undertaking for the scientists or
regional managers trying to understand near-shore activity.
Without monetary constraints, most scientists would opt to deploy a dense array
of powered static sensors throughout their survey space such as in (Brainard et al.,
2009). This deployment method allows for high spatial and time resolution and is
capbable of producing powerful datasets which can be used for understanding the
world. However, most of the time, this instrumentation is too costly to deploy over
large regions with high spatial resolution. In addition, because these array are not
easily transporable, they cannot be resued at new locations.
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Other surveying techniques employ sophisticated robots, such as aerial drones or
autonomous surface vehicles (ASVs). These robotic surveying systems usually em-
ploy an exhaustive sampling strategy. The exhaustive approach, though guaranteed
to produce a correct model of the data given Nyquist sampling over an apparently
static environment and calibrated sensors, can be tedious if the survey space is large
and the data is predictably distributed. Efficiency can often be achieved with the
same class of observational sensors by either better anticipating where important
information is located and adaptively sampling the spatial field (Bourgault et al.,
2002; Yog, 2016; Das et al., 2015; Low et al., 2008; Rahimi et al., 2005; Singh et al.,
2007; Fiorelli et al., 2006; Chadwick et al., 2016) and/or by reducing the cost of
traveling to each sample point (gli, 2004; Busquets et al., 2012).

4.2.1 Heterogeneous Sensing Teams

My approach to low-cost autonomous surveying system utilizes learned and known
models to enable long-term (multi-day) surveys with a heterogeneous robot team in
marine regions. In addition to faster coverage with multiple agents, we know that
robot teams are often more resilient than single robot systems, since task completion
can still be achieved despite individual failures. Moreover, when teams are appropri-
ately heterogeneous, task distribution can be utilized to allocate individual classes of
robots for specific tasks (Dudek et al., 1996).
Our sampling team consists of an autonomous surface vehicle (ASV) which is able
to navigate around a survey region and may deploy a limited number, n of passive
floating sensors called drifters. Drifters are low-cost, passive sensors require very
little battery power to collect samples because their movement upon deployment
is governed by the ambient flowfield. The major focus of this project is built upon
the premise of accurately modeling the flowfield in order to exploit it for sensor
transport. Others have utilized flowfields for tracking features of interest (Kularatne
and Hsieh, 2015) and for generating informed paths (Kularatne et al., 2018; Inanc
et al., 2005; Kwok and Martínez, 2010), however, we believe we are the first to
consider autonomous deployment and cooperative sampling with drifters. Similar

Figure 8: Our heterogeneous marine sensing team described in Section 4.2. An
autonomous boat deploys a team of inexpensive passive drifters equipped with obser-
vational sensors which collect georeferenced samples of environmental phenomena,
including the local flowfield.
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techniques have been applied to mediums with observable dynamics that can be used
to transport an agent at low cost (such as animal tracking (Hart and Martinez, 2006)
or high-altitude parafoils for air-quality monitoring (Douglas Luders et al., 2016)).
Drifters can be equipped with a variety of sensors for collecting georeferenced
data and have been used extensively in oceanography (Wilson et al., 1996; Soreide
et al., 2001; Lumpkin et al., 2007; Meghjani et al., 2016; Shkurti et al., 2012; Alam
et al., 2018; Aoyagi et al., 2004). Priced at under $150CAD, these devices fill an
important niche in ocean observations with their long battery life and low-cost,
however, because these devices are not controllable once deployed, their deployment
location must be considered carefully in order to capture data from informative
regions of the survey area.

4.2.2 Challenges

There are many practical and learning problems involving the deployment of het-
erogeneous sensor systems. Within all distributed robot tasks there are important
considerations of power management, communication disruptions, and errors in
sensing and localization. For a given task it may be important to optimize for dif-
ferent parameters, such as performance, speed, cost, or safety of the system. In this
work, we primarily focus on problems related to environment modeling and action
selection and largely assume low sensor noise, good wireless infrastructure and a
predictable battery-recharge cycle.

~V = u(x, y, z, t)~i+ v(x, y, z, t)~j + w(x, y, z, t)~k

Strategic deployment is necessary to achieve any form of efficient coverage with
drifters. This was clear in our early work, (Quattrini Li et al., 2016; Manjanna
et al., 2016), in which we utilize data from randomly deployed drifters for informing
adaptive sampling schemes in controllable vehicles. In these early experiments,
the drifters tended to clump together or rapidly exit the survey area, reducing their
utility. However, previous research (Alam et al., 2018; Lumpkin and Elipot, 2010;
lum, 2005; Salman et al., 2008; Slivinski) has shown that, given a known flowfield,
(Equation 4.2.2), an initial deployment location of an object, and a perfect physical
description, a trajectory of the object through a flowfield, ~V (described by Equation
4.2.2), can be calculated using the advection equation as a function of time.

However, in the scale of survey regions that we consider (< 20km2 with sample
resolution of < 10m), the flowfield for most bodies of water is largely unknown
before the survey begins and is only precisely observable in-situ. We utilize the
real-time flow observations from our deployed sensors to estimate the true flowfield,
however, this configuration is the classic exploration vs. exploitation scenario .
We must explore in order to determine the flowfield which will dictate a drifter’s
trajectory that in turn dictates information gain.

(a) ocean drifter (b) autonomous surface vehicle (c) overhead of deployment

Figure 9: Hardware used in drifter field experiments.
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(a) Drifters (b) Baseline Performance

Figure 10: Figure 10a demonstrates the use of a physics simulator, OpenDrift
(Dagestad et al., 2017), to determine drifter trajectories in a flowfield that was used
in our experiments. The drifters depicted in this figure were randomly released at
the green points and traveled along the gray tracks over the period of 5 simulated
hours. The flowfield direction is described in each grid cell by an arrow and current
speed is represented by the colormap in m/s according to the color bar. Figure 10b
shows a performance comparison of several baselines over 40 flowfield maps from
(Hansen and Dudek, 2018). Good surveys contain a large number of unique points
and have drifters which stay in the survey region for as long as possible (i.e. the
top right corner is best). Our deployment scheme performed best in 37 of the 40
flowfields we examined.

4.2.3 Progress to Date

As part of a larger collaboration, I have assisted in building software and hardware
for the drifters and ASV seen in Figure 9. Though we have conducted several experi-
ments in open bodies of water, most of my work focuses on simulated experiments on
archival data. I built a comprehensive environment simulator for deploying drifters
under a variety of flowfield and environmental models utilizing Regional Ocean
Modeling Systems (ROMS) (Shchepetkin and McWilliams, 2005) geophysical data.
This simulated world allow for quantitative comparisons against known baselines.

• In our first experiments with incorporating drifters into the survey task, we
randomly deployed drifters into a survey region (Quattrini Li et al., 2016).
The drifters sampled a region in tandem with several autonomous sampling
vehicles, leading to increased coverage of the region. In (Manjanna et al.,
2016), we also deployed drifters randomly over a survey area, but this time,
we used the data relayed from these sensors to inform an ASV for efficient
adaptive sampling (Manjanna et al., 2016).
• In (Hansen and Dudek, 2018), we introduced an approach for finding drifter

deployment points which optimize for survey coverage, using the ASV
only for drifter deployment (Figure 11). In this paradigm, deployed drifters
collect observations of the flowfield use this data to model the flowfield using
a Gaussian Process (GP). Use the uncertainty output of the Gaussian Process
to sample a computationally feasible number of potential deployment points
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(a) ours (b) variance (c) distributed long (d) random (e) ground truth (f)

Figure 11: This panel shows the deployments (numbered red points) chosen for 10
drifters under 4 different deployment schemes. Our approach in (Hansen and Dudek,
2018), which optimized drifter deployment for coverage, is compared to 4 baselines
(only 3 best performing are shown). The true flowfield for these experiments is
depicted in Figure 11e. The background (m/s refers in colorbar in Figure 11f) and
arrows in the experimental figures depict each deployment scheme’s estimate of the
flowfield at the terminal state of the survey.

and then find the trajectories from these points using the flowfield estimate
and a particle simulator. Score the hypothetical trajectories based on expected
information gain and deploy a drifter to the highest value deployment point.
Repeat until all drifters are deployed.
• In (Hansen et al., 2018b), we introduce a comprehensive technique which

considers a surveying task in which both the ASV and the drifters are ca-
pable of observing the flowfield and phenomena of interest. We perform
task distribution between drifters and the ASV, optimizing for model error in
the flowfield of interest. The resulting policy results in the ASV deploying
drifters to points which result in long, informative trajectories as seen in Fig-
ure 12. The ASV samples around the drifters and their predicted trajectories,
resulting in efficient surveys.

4.2.4 Future Work

I aim to tackle recovery and redeployment of drifters for persistent sampling in
marine flowfields. In previous work, we have limited our surveys to regions in
which the flowfield remains constant over time. Future work will consider temporal
changes in the flowfield.
The physics simulator used to estimate drifter trajectories in (Hansen and Dudek,
2018) and (Hansen et al., 2018b) is relatively slow at the scale at which we are
estimating. In future work, I will investigate the incorporation of neural models such
as those presented in (Tompson et al., 2016) for accelerating eurlerian calculations.
My previous flowfield modeling efforts have started training a model from scratch at
every survey. However, there are many attributes of flowfields that may be informed
from previously observed data. I’ll look at approaches for transfering understanding
to new environments and for using available priors such as bathymetry maps and
satellite imagery. Rather than utilizing a rules-based approach as in previous work
for ASV actions, I will learn an policy for drifter deployment and collection.
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(a) ASV Path (b) Drifter Path (c) True Flowfield (d) Estimate (e) Final RMSE (f)

Figure 12: Figure 12a shows the full boat path (black points) at the end of an
experiment in which our algorithm distributes observation tasks between an ASV
and several drifters as described in (Hansen et al., 2018b). In this figure, the last
position of the ASV is shown in red and all sampled positions (drifters and ASV) are
shown in violet. The background is the normalized reward map used for driving ASV
sampling and follows the colorbar in Figure 10a. Figure 12c is the true flowfield
and Figure 12d is what the experiment estimated the flowfield to be at the end of
the experiment. The background for Figures 12b,12c and 12d refer to speed in m/s
in the colorbar seen in Figure 10a. In Figure 12d, we also depict actual trajectory
of the drifters in black as well as their starting positions in red. Estimates of the
future trajectories are included in gray points with a green marker indicating the
final position, however, at this point in time all of the drifters have actually exited
the survey area. The rightmost image, Figure 12e, shows the Root Mean Square
Error (RMSE) in m/s of Figure 12d with respect to the ground truth. The colorbar
in Figure 12f provides the metric for Figure 12e.
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5 Timeline

In the remaining time during my PhD, I aim to accomplish the tasks presented below
in Table 1 and discussed in Sections 4.2.4 and 4.1.3.
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Status Months Project Problem Description
C 2 D Random drifter distribution for building prior

for ASV using real data collected from Bellairs
Reef at the McGill Field Station in Barbados.

C 6 D Cooperative development of hardware/software
platforms for ASV and drifters.

C 4 D Build infrastructure pipeline for testing drifter
deployment in simulation using (Shchepetkin
and McWilliams, 2005) for data and the particle
physics simulator, (Dagestad et al., 2017).

C 3 D Develop deployment strategy for coverage with
drifters in unknown flow field.

C 2 D Explore/exploit with ASV and drifter sensors in
unknown flow field.

C 5 D Learn fully observable environment dynamics
and combine with search.

W 4 G Incorporate exploration to learn dynamics model
in environments which are not fully observable
through random actions.

W 5 G Sample-efficient model-based RL agent on pop-
ular RL baselines.

W 8 G Sample-efficient transfer of model-based RL
agent to unseen, but related environments such
as those in (Plappert et al., 2018), (Cobbe et al.,
2018), or (Xia et al., 2018).

F 4 S Mars sample discovery and retrieval for the 2020
Sample Return Project at Jet Propulsion Lab
(JPL) summer internship.

F 3 D Learn transferable environment models and pol-
icy on flow fields with passive sensors in tempo-
rally changing flow field.

F 3 D Recovery and redeployment of drifter for long-
term (multiple week) studies in temporally
changing flow field in simulation.

S 6 D Extend to simulated multi-agent, active-drifter
setting.

S 4 S Extend to additional domains like hurricane
(JPL, 2016) or air pollution (NOAA), or vari-
ous earth-science datasets (Google).

S 6 D Develop strategy for drifter recovery using vi-
sion on real ASV and demonstrate in multi-day
field deployment (requires significant hardware
and field time).

Table 1: This table describes the tasks that I believe are necessary for completing my
PhD in model-based surveying for scientific sampling robots. In the Status column,
"C" indicates that a task has been completed, "W" indicates that I am currently
working on this task, "F" indicates that this is future work, and "S" indicates a
stretch goal. Integers in the Months column depict my estimate for the number of
months necessary to achieve the task (note that tasks may overlap). A "D" in the
Project column means that the task is intended to be applied to the "Drifters" project.
An "S" in the Projects columns indicates that this is a broader scientific-sampling
focused problem, and "G" suggests that the research is oriented towards general
decision-making agents.

20



References

Underwater gliders for ocean research. Marine Technology Society Journal, 38(2),
2004.

Near-surface circulation in the tropical atlantic ocean. Deep Sea Research Part I:
Oceanographic Research Papers, 52(3):495 – 518, 2005. ISSN 0967-0637.

Modeling curiosity in a mobile robot for long-term autonomous exploration and
monitoring. 40:1267–1278, 2016.

P. Abbeel and A. Y. Ng. Exploration and apprenticeship learning in reinforcement
learning. In Proceedings of the 22Nd International Conference on Machine
Learning, ICML ’05, pages 1–8, New York, NY, USA, 2005. ACM. ISBN 1-
59593-180-5. doi: 10.1145/1102351.1102352. URL http://doi.acm.org/10.
1145/1102351.1102352.

T. Alam, G. M. Reis, L. Bobadilla, and R. N. Smith. A data-driven deployment
approach for persistent monitoring in aquatic environments. In IEEE International
Conference on Robotic Computing (IRC), pages 147–154, Jan 2018. doi: 10.1109/
IRC.2018.00030.

A. A. Alemi, B. Poole, I. Fischer, J. V. Dillon, R. A. Saurous, and K. Mur-
phy. An information-theoretic analysis of deep latent-variable models. CoRR,
abs/1711.00464, 2017. URL http://arxiv.org/abs/1711.00464.

T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with deep learning and
tree search. CoRR, abs/1705.08439, 2017.

H. Aoyagi, Y. Michida, M. Inada, H. Otobe, and R. Takimoto. Experiment of
particle dispersion on the sea surface with gps tracked drifters. In OCEANS ’04.
MTTS/IEEE TECHNO-OCEAN ’04, volume 1, pages 139–145 Vol.1, Nov 2004.
doi: 10.1109/OCEANS.2004.1402908.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning
environment: An evaluation platform for general agents. CoRR, abs/1207.4708,
2012.

M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos.
Unifying count-based exploration and intrinsic motivation. CoRR, abs/1606.01868,
2016. URL http://arxiv.org/abs/1606.01868.

R. Bellman. Dynamic programming princeton university press. Princeton, NJ, 1957.
C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.
F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F. Durrant-

Whyte. Information based adaptive robotic exploration. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 1, pages 540–545 vol.1,
Sept 2002. doi: 10.1109/IRDS.2002.1041446.

R. Brainard, R. Moffitt, M. Timmers, G. Paulay, L. Plaisance, N. Knowlton, J. Caley,
F. Fohrer, A. Charette, C. Meyer, et al. Autonomous reef monitoring structures
(arms): A tool for monitoring indices of biodiversity in the pacific islands. In 11th
Pacific Science Inter-Congress, Papeete, Tahiti, 2009.

C. Browne and E. Powley. A survey of monte carlo tree search methods. Intelligence
and AI, 4(1):1–49, 2012. ISSN 1943-068X. doi: 10.1109/TCIAIG.2012.2186810.

L. Buesing, T. Weber, S. Racanière, S. M. A. Eslami, D. J. Rezende, D. P. Reichert,
F. Viola, F. Besse, K. Gregor, D. Hassabis, and D. Wierstra. Learning and querying
fast generative models for reinforcement learning. CoRR, abs/1802.03006, 2018.

21

http://doi.acm.org/10.1145/1102351.1102352
http://doi.acm.org/10.1145/1102351.1102352
http://arxiv.org/abs/1711.00464
http://arxiv.org/abs/1606.01868


J. Busquets, J. V. Busquets, D. Tudela, F. Pérez, J. Busquets-Carbonell, A. Barberá,
C. Rodríguez, A. J. García, and J. Gilabert. Low-cost auv based on arduino
open source microcontroller board for oceanographic research applications in a
collaborative long term deployment missions and suitable for combining with an
usv as autonomous automatic recharging platform. In 2012 IEEE/OES Autonomous
Underwater Vehicles (AUV), pages 1–10, Sept 2012. doi: 10.1109/AUV.2012.
6380720.

B. Chadwick, C. Katz, J. Ayers, J. Oiler, M. Grover, A. Sybrandy, J. Radford,
T. Wilson, and P. Salamon. Gps drifter technologies for tracking and sampling
stormwater plumes. In OCEANS 2016 MTS/IEEE Monterey, pages 1–10, Sept
2016. doi: 10.1109/OCEANS.2016.7761010.

K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman. Quantifying generalization
in reinforcement learning. CoRR, abs/1812.02341, 2018. URL http://arxiv.
org/abs/1812.02341.

K.-F. Dagestad, J. Röhrs, Ø. Breivik, and B. Ådlandsvik. Opendrift v1.0: a
generic framework for trajectory modeling. Geoscientific Model Development
Discussions, 2017:1–28, 2017. doi: 10.5194/gmd-2017-205. URL https:
//www.geosci-model-dev-discuss.net/gmd-2017-205/.

J. Das, F. Py, J. B. Harvey, J. P. Ryan, A. Gellene, R. Graham, D. A. Caron,
K. Rajan, and G. S. Sukhatme. Data-driven robotic sampling for marine ecosystem
monitoring. The International Journal of Robotics Research, 34(12):1435–1452,
2015. doi: 10.1177/0278364915587723. URL https://doi.org/10.1177/
0278364915587723.

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time single
camera slam. IEEE Trans. Pattern Anal. Mach. Intell., 29(6):1052–1067, June
2007. ISSN 0162-8828.

M. Deisenroth and C. Rasmussen. Pilco: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on Machine
Learning, ICML 2011, pages 465–472. Omnipress, 2011.

B. Douglas Luders, A. Cole Ellertson, J. How, and I. Sugel. Wind uncertainty
modeling and robust trajectory planning for autonomous parafoils. 39:1–17, 05
2016.

G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cambridge
University Press, New York, NY, USA, 2nd edition, 2010. ISBN 0521692121,
9780521692120.

G. Dudek, M. R. M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for multi-agent
robotics. Autonomous Robots, 3(4):375–397, Dec 1996. ISSN 1573-7527. doi:
10.1007/BF00240651.

J. L. Elman. Finding structure in time. COGNITIVE SCIENCE, 14(2):179–211,
1990.

C. Finn and S. Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 2786–2793,
May 2017. doi: 10.1109/ICRA.2017.7989324.

C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Deep spatial
autoencoders for visuomotor learning. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 512–519, May 2016. doi: 10.1109/ICRA.
2016.7487173.

E. Fiorelli, N. E. Leonard, P. Bhatta, D. A. Paley, R. Bachmayer, and D. M. Fratantoni.
Multi-AUV control and adaptive sampling in monterey bay. IEEE Journal of
Oceanic Engineering, 31(4):935–948, 2006.

22

http://arxiv.org/abs/1812.02341
http://arxiv.org/abs/1812.02341
https://www.geosci-model-dev-discuss.net/gmd-2017-205/
https://www.geosci-model-dev-discuss.net/gmd-2017-205/
https://doi.org/10.1177/0278364915587723
https://doi.org/10.1177/0278364915587723


M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami,
and Y. W. Teh. Neural processes. CoRR, abs/1807.01622, 2018. URL http:
//arxiv.org/abs/1807.01622.

M. Germain, K. Gregor, I. Murray, and H. Larochelle. Made: Masked autoencoder
for distribution estimation. In F. Bach and D. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 881–889, Lille, France, 07–09 Jul 2015.
PMLR. URL http://proceedings.mlr.press/v37/germain15.html.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Google. Google earth: A planetary-scale platform for earth science data anal-
ysis. https://developers.google.com/earth-engine/datasets/. Ac-
cessed: 2018-11-10.

A. Graves, J. Menick, and A. van den Oord. Associative compression networks
for representation learning. CoRR, abs/1804.02476, 2018. URL http://arxiv.
org/abs/1804.02476.

R. Gray. Vector quantization. IEEE ASSP Magazine, 1(2):4–29, April 1984. ISSN
0740-7467. doi: 10.1109/MASSP.1984.1162229.

A. Guez, T. Weber, I. Antonoglou, K. Simonyan, O. Vinyals, D. Wierstra, R. Munos,
and D. Silver. Learning to search with mctsnets. CoRR, abs/1802.04697, 2018.

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taïga, F. Visin, D. Vázquez, and
A. C. Courville. Pixelvae: A latent variable model for natural images. CoRR,
abs/1611.05013, 2016. URL http://arxiv.org/abs/1611.05013.

X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep learning for real-time
atari game play using offline monte-carlo tree search planning. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 3338–3346. Curran Associates,
Inc., 2014.

M. H. S. Segler, M. Preuss, and M. P. Waller. Learning to plan chemical syntheses.
08 2017.

D. Ha and J. Schmidhuber. World models. CoRR, abs/1803.10122, 2018.
J. Hansen and G. Dudek. Coverage optimization with non-actuated, float-

ing mobile sensors using iterative trajectory planning in marine flow fields.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), October 2018. URL http://johannah.github.io/publications/
iros2018driftercoverage.pdf.

J. Hansen, K. Kastner, A. Courville, =, and G. Dudek. Planning in dynamic
environments with conditional autoregressive models. In Prediction and Gen-
erative Modeling in Reinforcement Learning Workshop at International Con-
ference on Machine Learning (ICML), pages 1–6, July 2018a. URL http:
//reinforcement-learning.ml/papers/pgmrl2018_hansen.pdf.

J. Hansen, S. Manjanna, A. Q. Li, I. Rekleitis, and G. Dudek. Autonomous marine
sampling enhanced by strategically deployed drifters in marine flow fields. In
OCEANS’18 MTS/IEEE Charleston, pages 1–7, October 2018b. URL http:
//johannah.github.io/publications/iros2018driftercoverage.pdf.

J. K. Hart and K. Martinez. Environmental sensor networks: A revolution in the
earth system science? Earth-Science Reviews, 78(3):177 – 191, 2006. ISSN
0012-8252.

23

http://arxiv.org/abs/1807.01622
http://arxiv.org/abs/1807.01622
http://proceedings.mlr.press/v37/germain15.html
http://www.deeplearningbook.org
https://developers.google.com/earth-engine/datasets/
http://arxiv.org/abs/1804.02476
http://arxiv.org/abs/1804.02476
http://arxiv.org/abs/1611.05013
http://johannah.github.io/publications/iros2018driftercoverage.pdf
http://johannah.github.io/publications/iros2018driftercoverage.pdf
http://reinforcement-learning.ml/papers/pgmrl2018_hansen.pdf
http://reinforcement-learning.ml/papers/pgmrl2018_hansen.pdf
http://johannah.github.io/publications/iros2018driftercoverage.pdf
http://johannah.github.io/publications/iros2018driftercoverage.pdf


S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

T. Inanc, S. C. Shadden, and J. E. Marsden. Optimal trajectory generation in ocean
flows. In Proceedings of the 2005, American Control Conference, 2005., pages
674–679, June 2005. doi: 10.1109/ACC.2005.1470035.

M. Jakuba. Nui technical overview. http://www.whoi.edu/main/
nereid-under-ice/technical-overview, 2014. Accessed: 2018-09-30.

JPL. Nasa jpl satellites dissect powerful hurricane matthew. https://www.jpl.
nasa.gov/news/news.php?feature=6643, 2016. Accessed: 2010-09-30.

D. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski,
D. Erhan, C. Finn, P. Kozakowski, S. Levine, R. Sepassi, G. Tucker, and
H. Michalewski. Model-based reinforcement learning for atari. CoRR,
abs/1903.00374, 2019.

N. Kalchbrenner, A. van den Oord, K. Simonyan, I. Danihelka, O. Vinyals, A. Graves,
and K. Kavukcuoglu. Video pixel networks. CoRR, abs/1610.00527, 2016.

L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, Aug 1996. ISSN
1042-296X. doi: 10.1109/70.508439.

O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In
Proceedings. 1985 IEEE International Conference on Robotics and Automation,
volume 2, pages 500–505, March 1985. doi: 10.1109/ROBOT.1985.1087247.

K. Kim, D. Lee, and I. Essa. Gaussian process regression flow for analysis of
motion trajectories. In 2011 International Conference on Computer Vision, pages
1164–1171, Nov 2011. doi: 10.1109/ICCV.2011.6126365.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2013.

L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, editors, Proceedings of the Seventeenth Euro-
pean Conference on Machine Learning (ECML 2006), volume 4212 of Lecture
Notes in Computer Science, pages 282–293, Berlin/Heidelberg, Germany, 2006.
Springer. ISBN 3-540-45375-X. URL http://www.sztaki.hu/~szcsaba/
papers/ecml06.pdf.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. Commun. ACM, 60(6):84–90, May 2017. ISSN 0001-
0782. doi: 10.1145/3065386. URL http://doi.acm.org/10.1145/3065386.

D. Kularatne and A. Hsieh. Tracking attracting Lagrangian coherent structures in
flows. In Robotics: Science and Systems (RSS), 2015.

D. Kularatne, S. Bhattacharya, and M. A. Hsieh. Optimal path planning in time-
varying flows using adaptive discretization. IEEE Robotics and Automation Letters,
3(1):458–465, Jan 2018. doi: 10.1109/LRA.2017.2761939.

A. Kwok and S. Martínez. A coverage algorithm for drifters in a river environment.
In Proceedings of the 2010 American Control Conference, pages 6436–6441, June
2010. doi: 10.1109/ACC.2010.5531467.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. A
survey of mobile phone sensing. IEEE Communications Magazine, 48(9):140–150,
Sept 2010. ISSN 0163-6804. doi: 10.1109/MCOM.2010.5560598.

24

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.whoi.edu/main/nereid-under-ice/technical-overview
http://www.whoi.edu/main/nereid-under-ice/technical-overview
https://www.jpl.nasa.gov/news/news.php?feature=6643 
https://www.jpl.nasa.gov/news/news.php?feature=6643 
http://www.sztaki.hu/~szcsaba/papers/ecml06.pdf
http://www.sztaki.hu/~szcsaba/papers/ecml06.pdf
http://doi.acm.org/10.1145/3065386


H. Larochelle and I. Murray. The neural autoregressive distribution estimator. In
G. Gordon, D. Dunson, and M. Dudík, editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 29–37, Fort Lauderdale, FL,
USA, 11–13 Apr 2011. PMLR. URL http://proceedings.mlr.press/v15/
larochelle11a.html.

S. M. Lavalle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, 1998.

S. M. LaValle. Planning Algorithms. Cambridge University Press, New York, NY,
USA, 2006. ISBN 0521862051.

K. Li, T. Zhang, and J. Malik. Diverse image synthesis from semantic layouts via
conditional IMLE. CoRR, abs/1811.12373, 2018. URL http://arxiv.org/
abs/1811.12373.

N. Lipovetzky, M. Ramirez, and H. Geffner. Classical planning with simulators:
Results on the atari video games. In Proceedings of the 24th International Confer-
ence on Artificial Intelligence, IJCAI’15, pages 1610–1616. AAAI Press, 2015.
ISBN 978-1-57735-738-4.

K. H. Low, J. M. Dolan, and P. Khosla. Adaptive multi-robot wide-area exploration
and mapping. In Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems-Volume 1, pages 23–30. International
Foundation for Autonomous Agents and Multiagent Systems, 2008.

R. Lumpkin and S. Elipot. Surface drifter pair spreading in the north atlantic. Journal
of Geophysical Research: Oceans, 115(C12):n/a–n/a, 2010. ISSN 2156-2202.
C12017.

R. Lumpkin, M. Pazos, N. Oceanographic, and A. Administration. Measuring
surface currents with surface velocity program drifters: the instrument, its data,
and some recent results‖. chapter two of lagrangian analysis. In and Prediction of
Coastal and Ocean Dynamics. University Press, 2007.

T. Manderson and G. Dudek. Gpu-assisted learning on an autonomous marine robot
for vision based navigation and image understanding. In OCEANS’18 MTS/IEEE
Charleston, pages 1–7, October 2018.

S. Manjanna, N. Kakodkar, M. Meghjani, and G. Dudek. Efficient terrain driven
coral coverage using gaussian processes for mosaic synthesis. In 13th Conference
on Computer and Robot Vision (CRV), 2016, pages 448–455. IEEE, 2016.

M. Meghjani, S. Manjanna, and G. Dudek. Multi-target rendezvous search. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2016, pages 2596–2603. IEEE, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis. Human-level control through deep reinforcement learning. Nature, (7540):
529–533, 02 .

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
M. F. Balcan and K. Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.
URL http://proceedings.mlr.press/v48/mniha16.html.

D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

25

http://proceedings.mlr.press/v15/larochelle11a.html
http://proceedings.mlr.press/v15/larochelle11a.html
http://arxiv.org/abs/1811.12373
http://arxiv.org/abs/1811.12373
http://proceedings.mlr.press/v48/mniha16.html


2004. CVPR 2004., volume 1, pages I–I, June 2004. doi: 10.1109/CVPR.2004.
1315094.

NOAA. National oceanic and atmospheric administration.
https://www.ncdc.noaa.gov/data-access. Accessed: 2018-11-10.

J. Oh, X. Guo, H. Lee, R. Lewis, and S. Singh. Action-conditional video prediction
using deep networks in atari games. In Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’15, pages
2863–2871, Cambridge, MA, USA, 2015. MIT Press.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped
dqn. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages 4026–4034. Curran
Associates, Inc., 2016.

I. Osband, J. Aslanides, and A. Cassirer. Randomized prior functions for
deep reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 8617–8629. Cur-
ran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8080-randomized-prior-functions-for-deep-reinforcement-learning.
pdf.

T. Pepels, M. H. M. Winands, and M. Lanctot. Real-time monte carlo tree search in
ms pac-man. IEEE Transactions on Computational Intelligence and AI in Games,
6(3):245–257, Sept 2014. ISSN 1943-068X. doi: 10.1109/TCIAIG.2013.2291577.

M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schnei-
der, J. Tobin, M. Chociej, P. Welinder, V. Kumar, and W. Zaremba. Multi-goal
reinforcement learning: Challenging robotics environments and request for re-
search, 2018.

A. Quattrini Li, I. Rekleitis, S. Manjanna, N. Kakodkar, J. Hansen, G. Dudek,
L. Bobadilla, J. Anderson, and R. N. Smith. Data correlation and comparison from
multiple sensors over a coral reef with a team of heterogeneous aquatic robots. In
International Symposium of Experimental Robotics (ISER), Tokyo, Japan, Mar.
2016.

S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende,
A. Puigdomènech Badia, O. Vinyals, N. Heess, Y. Li, R. Pascanu, P. Battaglia,
D. Hassabis, D. Silver, and D. Wierstra. Imagination-augmented agents for deep
reinforcement learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5690–5701. Curran Associates, Inc., 2017.

M. Rahimi, M. Hansen, W. J. Kaiser, G. S. Sukhatme, and D. Estrin. Adaptive
sampling for environmental field estimation using robotic sensors. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3692–
3698, 2005.

C. E. Rasmussen. Gaussian processes for machine learning. 2006.
N. D. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional gradient

techniques for imitation learning. Auton. Robots, 27:25–53, 2009.
S. Reece, R. Mann, I. Rezek, and S. Roberts. Gaussian Process Segmentation of

Co-Moving Animals. In A. Mohammad-Djafari, J.-F. Bercher, and P. Bessiére,
editors, American Institute of Physics Conference Series, volume 1305 of American
Institute of Physics Conference Series, pages 430–437, Mar. 2011. doi: 10.1063/1.
3573650.

26

http://papers.nips.cc/paper/8080-randomized-prior-functions-for-deep-reinforcement-learning.pdf
http://papers.nips.cc/paper/8080-randomized-prior-functions-for-deep-reinforcement-learning.pdf
http://papers.nips.cc/paper/8080-randomized-prior-functions-for-deep-reinforcement-learning.pdf


S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 91–99.
Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.
pdf.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of The 31st
International Conference on Machine Learning (ICML), pages 1278–1286, 2014.

D. E. Rivera, M. Morari, and S. Skogestad. Internal model control: Pid controller
design. Industrial & Engineering Chemistry Process Design and Development,
25(1):252–265, 1986. doi: 10.1021/i200032a041. URL https://doi.org/10.
1021/i200032a041.

E. Rolf, D. Fridovich-Keil, M. Simchowitz, B. Recht, and C. Tomlin. A Successive-
Elimination Approach to Adaptive Robotic Sensing. ArXiv e-prints, Sept. 2018.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F.
Frangi, editors, Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015, pages 234–241, Cham, 2015. Springer International Publishing.
ISBN 978-3-319-24574-4.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In G. Gordon, D. Dunson, and
M. Dudík, editors, Proceedings of the Fourteenth International Conference on Ar-
tificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning
Research, pages 627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.
URL http://proceedings.mlr.press/v15/ross11a.html.

T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: A pixelcnn im-
plementation with discretized logistic mixture likelihood and other modifications.
In ICLR, 2017.

H. Salman, K. IDE, and C. K. R. T. JONES. Using flow geometry for drifter
deployment in lagrangian data assimilation. Tellus A, 60(2):321–335, 2008. ISSN
1600-0870. doi: 10.1111/j.1600-0870.2007.00292.x.

S. Schaal. Is imitation learning the route to humanoid robots?, 1999.
A. F. Shchepetkin and J. C. McWilliams. The regional oceanic modeling system

(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic
model. Ocean Modelling, 9:347–404, 2005.

F. Shkurti, A. Xu, M. Meghjani, J. C. G. Higuera, Y. Girdhar, P. Giguere, B. B.
Dey, J. Li, A. Kalmbach, C. Prahacs, K. Turgeon, I. Rekleitis, and G. Dudek.
Multi-domain monitoring of marine environments using a heterogeneous robot
team. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1447–1753, Portugal, Oct. 2012.

D. Silver. Lecture 8: Integrating learning and planning. http://www0.cs.ucl.
ac.uk/staff/d.silver/web/Teaching_files/dyna.pdf. Accessed: 2018-
10-15.

D. Silver. Learning Preference Models for Autonomous Mobile Robots in Complex
Domains. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, December
2010.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,

27

http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://doi.org/10.1021/i200032a041
https://doi.org/10.1021/i200032a041
http://proceedings.mlr.press/v15/ross11a.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/dyna.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/dyna.pdf


D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, Jan. 2016. doi:
10.1038/nature16961.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel, and D. Hassabis. Mastering the game of go without human
knowledge. Nature, 550:354–, Oct. 2017.

A. Singh, A. Krause, C. Guestrin, W. J. Kaiser, and M. A. Batalin. Efficient planning
of informative paths for multiple robots. In International Joint Conferences on
Artificial Intelligence (IJCAI), volume 7, pages 2204–2211, 2007.

A. Singh, F. Ramos, H. D. Whyte, and W. J. Kaiser. Modeling and decision making
in spatio-temporal processes for environmental surveillance. In 2010 IEEE Inter-
national Conference on Robotics and Automation, pages 5490–5497, May 2010.
doi: 10.1109/ROBOT.2010.5509934.

L. . R. I. . O. M. . R. B. . M. J. . E. S. Slivinski, Laura Pratt.
N. N. Soreide, C. E. Woody, and S. M. Holt. Overview of ocean based buoys and

drifters: present applications and future needs. In MTS/IEEE Oceans 2001. An
Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), volume 4,
pages 2470–2472 vol.4, 2001. doi: 10.1109/OCEANS.2001.968388.

A. Stentz. Optimal and Efficient Path Planning for Partially Known Environments,
pages 203–220. Springer US, Boston, MA, 1997. ISBN 978-1-4615-6325-9. doi:
10.1007/978-1-4615-6325-9_11.

R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bull., 2(4):160–163, July 1991. ISSN 0163-5719. doi: 10.1145/122344.
122377. URL http://doi.acm.org/10.1145/122344.122377.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A
survey. J. Mach. Learn. Res., 10:1633–1685, Dec. 2009. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=1577069.1755839.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press, 2005. ISBN 0262201623.

J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating Eulerian
Fluid Simulation With Convolutional Networks. ArXiv e-prints, July 2016.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model
for raw audio. In Arxiv, 2016a.

A. van den Oord, N. Kalchbrenner, L. Espeholt, k. kavukcuoglu, O. Vinyals, and
A. Graves. Conditional image generation with pixelcnn decoders. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 4790–4798. Curran Associates,
Inc., 2016b.

A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel Recurrent Neural
Networks. ArXiv e-prints, Jan. 2016.

A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,
G. van den Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, N. Casagrande,
D. Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner, H. Zen, A. Graves,
H. King, T. Walters, D. Belov, and D. Hassabis. Parallel wavenet: Fast high-fidelity
speech synthesis. CoRR, abs/1711.10433, 2017a.

28

http://doi.acm.org/10.1145/122344.122377
http://dl.acm.org/citation.cfm?id=1577069.1755839


A. van den Oord, O. Vinyals, and k. kavukcuoglu. Neural discrete representation
learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 6306–6315. Curran Associates, Inc., 2017b.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 5998–
6008. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

G. Villarini, P. V. Mandapaka, W. F. Krajewski, and R. J. Moore. Rainfall and sam-
pling uncertainties: A rain gauge perspective. Journal of Geophysical Research:
Atmospheres, 113(D11).

O. Vinyals, C. Blundell, T. P. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching
networks for one shot learning. CoRR, abs/1606.04080, 2016. URL http:
//arxiv.org/abs/1606.04080.

K. A. Wang, G. Pleiss, J. R. Gardner, S. Tyree, K. Q. Weinberger, and A. G.
Wilson. Exact Gaussian Processes on a Million Data Points. arXiv e-prints, art.
arXiv:1903.08114, Mar 2019.

G. Webster. Nasa’s mars curiosity debuts au-
tonomous navigation. https://mars.nasa.gov/news/
nasas-mars-curiosity-debuts-autonomous-navigation/, 2013. Ac-
cessed: 2018-09-30.

T. C. Wilson, J. A. Barth, S. D. Pierce, P. M. Kosro, and B. W. Waldorf. A lagrangian
drifter with inexpensive wide area differential gps positioning. In OCEANS 96
MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st
Century, volume 2, pages 851–856 vol.2, Sep 1996. doi: 10.1109/OCEANS.1996.
568340.

F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese. Gibson Env:
real-world perception for embodied agents. In Computer Vision and Pattern
Recognition (CVPR), 2018 IEEE Conference on. IEEE, 2018.

A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of things
for smart cities. IEEE Internet of Things Journal, 1(1):22–32, Feb 2014. ISSN
2327-4662. doi: 10.1109/JIOT.2014.2306328.

Y. Zhao, F. Yin, F. Gunnarsson, F. Hultkratz, and J. Fagerlind. Gaussian processes
for flow modeling and prediction of positioned trajectories evaluated with sports
data. In 2016 19th International Conference on Information Fusion (FUSION),
pages 1461–1468, July 2016.

29

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
https://mars.nasa.gov/news/nasas-mars-curiosity-debuts-autonomous-navigation/
https://mars.nasa.gov/news/nasas-mars-curiosity-debuts-autonomous-navigation/

	Introduction
	Motivation
	Contribution

	Robot Decision-Making
	Reactive Methods
	Deliberative Methods
	Models

	Challenges
	Imperfect Observations
	Sample Efficiency
	Exploration

	Research Direction
	Model-Based Decision Making Agents
	Flowfield Modeling for Low-Cost Persistent Autonomous Sampling

	Timeline

