
Doctoral Thesis Proposal:
Robotic transfer of motor skills from low fidelity domains

Juan Camilo Gamboa Higuera
School of Computer Science

McGill University
gamboa@cim.mcgill.ca

November 26, 2015

Abstract

The bootstrap scenario describes the situation where a software agent is placed in a robotic body and,
without any prior information, learns how to use its sensors and actuators to perform tasks like servoing
and waypoint following, building up new skills for more complex tasks. The ultimate goal of research on
such problem is to produce an universal controller, that could be placed on any robotic body and learn how
to use it, going from “pixels to policies”. As such learning agent relies on gathering extensive experience,
it requires large amounts of trials which can carry a high cost and risk; e.g. constant human supervision,
degradation of the robot’s components, potentially dangerous exploration.

Rather than trying to solve the “robot that learns everything” scenario, we focus on the problem of a
robot learning how to move. We assume that the agent can interpret its sensor data as information about
its state and it knows its morphology. We further assume that it is given a model of how the world works,
in the form of physically based simulators. Using this information, the robot must obtain control policies
specifying the control commands that bring about a desired outcome in the environment.

The use of physically based simulators would allow the agent to learn a motor task without the cost
and risk associated with real world trials. However, physically based simulators are low fidelity models of
reality, so the agent must adapt its knowledge when applying it in the real world. The learning agent has to
determine which models are good enough for learning a motor task, learn to perform the task using such
models, then transfer the learned controller to the physical system. We provide a description of the methods
we have used for learning swimming controllers from simulation and transferring such controllers to a real
robot.

As an extension, we propose a system in which data from learning motor control tasks could be trans-
ferred between robots with different morphologies, when the descriptions of the morphologies are available
to the learning agent. We envision a robotic learning system that is able to transfer motor skills between
a source and a target domain addressing the following open questions: Can a robot learn a skill from low
fidelity models, and directly use it in the target domain? How do we use new data to correct inaccurate
models? Can we determine when using a particular model has a negative impact on performance? How
should a robot pick which model to use for learning a task?

1 Introduction

Successful robotic systems will need to adapt to the unforeseen. It is impossible to program a robot for
every situation it will face in the future: the real world is dynamic, not fully observable, task requirements
may change over time, and robot sensors and actuators degrade with repeated use. Similar to how humans
are able to adapt to novel situations using a rather unreliable set of sensors and actuators, robots will
have to “learn” from every situation they are presented with, either from sensing information, or from
interacting with humans. In either case, learning requires collecting data from interactions to build models
or mechanisms to predict the outcomes of future actions. The quality of these predictions generally depends
on the amount of data available. But collecting data with a physical robot can be costly, or potentially

1

(a) Simplified biped simulation (b) Humanoid simulation (c) 3D printed hu-
manoid

Figure 1: Is it possible to download a “walking” program to each of the three situations, making adjustments
to the program while avoiding learning from scratch? How can we apply knowledge obtained from the biped
simulation on the physical robot? (The 3D printed humanoid is the Poppy platform (Lapeyre et al., 2014))

dangerous. Thus robot learning needs to be data efficient in order to be practical. An effective robotic
system will have to address these two conflicting requirements: collecting sufficient data and using data
efficiently.

One way to be data efficient, is to share knowledge between robots, or across tasks. As an example
consider the robotic systems shown on Figure 1. If a biped robot first learns how to balance in standing
position, it should be able to use this knowledge to learn how to walk. And if we transform this biped into
a humanoid robot, it should be able to take advantage of the similarities between these two morphologies
to avoid learning from scratch. A similar point can be made about simulated or analytical models: if such
models make reasonable approximations, can a robot learn to perform a task using such models, and adapt
its knowledge to quickly execute the task on a physical realization of the robot? If the robot had access to
a model that perfectly replicated the relevant bits of reality necessary to successfully execute the task, then
the answer would be yes: a solution can be found using optimal control methods (Bertsekas, 1995; Jacobson
and Mayne, 1970). However, such models are rare, with the most accurate models requiring expensive
computations that make them impractical for mobile robotic applications in unstructured environments. In
the case where no model is available, the Reinforcement Learning (RL) paradigm (Sutton and Barto, 1998)
provides a framework for building models, or not using one at all, (Sutton et al., 1999a; Peters et al., 2010;
Levine and Koltun, 2013), but such methods require a large amount of data for effective learning.

Model based reinforcement learning (MBRL) and transfer learning (TL) are techniques that attempt to
tackle the data efficiency problem. In MBRL (Sutton, 1990; Atkeson and Santamaría, 1997), the robot builds
a model from its interactions with the environment. Such model is used to simulate future interactions and
to select appropriate actions for each situation accordingly; reducing the number of interactions with the real
world as the model becomes more accurate. Recent work has shown the applicability of MBRL techniques
to complex robotic systems (Deisenroth and Rasmussen, 2011; Meger et al., 2015; Moldovan et al., 2015),
but the computation time remains too high for being applicable to physical mobile robots. Another body of
recent work has shown how to combine MBRL and TL to reduce the number of interactions on a physical
system (Cutler et al., 2014; Cutler and How, 2015; Ha and Yamane, 2015), but it has only been demonstrated
for relatively simple robotic systems; e.g. balancing an inverted pendulum.

TL is the formalization of the problem of reusing data across tasks, situations, or robot morphologies,
in order to speed up learning on a target domain (Taylor and Stone, 2009). With such goal, it is hard
to separate the problem of transfer learning from that of learning in general. In our proposed research,
the distinction is clearer: we attempt to transfer knowledge obtained from low fidelity models to a target
physical robotic system. By low fidelity models we refer to any black box that receives as input any robot state
and action, producing a prediction of the change in the state. Our goal is to produce a robotic system that
learns in simulation (using low fidelity models) and only needs to make small adjustments when applying
its knowledge to the real world. Similar to recent work in control theory (Censi, 2012), this can be seen

2

(a) Swimming Gaits on the AQUA underwa-
ter swimming platform

(b) Biomimetic Locomotion (c) Humanoid Loco-
motion

Figure 2: Our research focuses on learning motor skills which can be used as building blocks for more
complex behaviours. Our main target platform is the AQUA robot (Sattar et al., 2008), but we also envision
deploying our algorithms for low cost 3D printable platforms, similar to the Aracna (Lohmann et al., 2012)
or Poppy (Lapeyre et al., 2014) platforms.

as projecting a robotic system to an approximating or simplifying description of the system, learning a
controller with such description, then using the inverse projection to obtain a controller for the original
system. This inverse projection is not necessarily a bijection1, thus additional adjustments need to be done
before obtaining an appropriate controller. Note that we do not restrict ourselves to learned models: we
want to use existing models as a way of reducing the real world data requirements. We base ourselves
on the observation that existing rigid body simulators, while grounded on unrealistic assumptions, they
make reasonable (and plausible) predictions of the behaviour of physical bodies under the effect of gravity,
frictional contacts, and joint constraints (Baraff, 1997), or bodies immersed in water (Si et al., 2014).

Since we are providing low fidelity models of motion dynamics for a robotic agent to test, our initial
focus will be on learning motor behaviours and skills, as opposed to the “robot that learns everything”
scenario (Kuipers et al., 2006; Censi, 2012; Levine et al., 2015a). These behaviours and skills can be defined
as tasks where the goal is to decide upon the appropriate motor control commands to bring a robot to a
desired state, or to cause a desired outcome in the environment. Example tasks, illustrated in Figure 2,
include performing swimming manoeuvres with a six legged underwater robot, or walking with a biped
robot. In such cases, the motor control commands would be the torques applied to each joint. The target
of learning is to find a mapping from states, or observations, to control commands which produce a desired
behaviour on the robot, i.e. control policy. Our initial objective is to transfer control policies learned on
low fidelity models, or simulators, to a physical robot. Given the generality of the optimal control, RL, and
TL frameworks, we use a similar framework, based on Markov Decision Processes (MDP), to formulate our
problem.

Although a multitude of methods have been proposed for transferring control policies, successful transfer
of motor skills between robots remains an open challenge – even between different realizations of the same
robot. As mentioned before, our proposed approach consists of using a simulator, where general physical
principles are encoded, to minimize the amount of data that is required by the robot in the real world. This
introduces two questions that we aim to address with our work:

1. Which methods can we use to adjust previously learned control policies to a new target robotic
system?

2. Given a target system and an ensemble of simulators, how should we select the appropriate
simulator, or an appropriate combination of such simulators, to learn a control policy for the
real robot?

1The low fidelity model might be missing degrees of freedom, or perceived state dimensions. When using the inverse projection,
there will be state or control dimensions that need to be “filled in”.

3

Answering these questions would not only allow us to synthesize controllers for mobile robotic systems
using data efficiently, it would also minimize the cost in terms of human supervision and robot component
degradation. We envision a learning system which consists of simulators running in the cloud (Censi, 2014),
that would operate as follows (illustrated in Figure 3): 1) When a robot is required to perform a new task,
it can send the task specification to the server, along with some of its recorded experience data. 2) The
experience data is used to select an appropriate model, or combination of models, that are similar to the
robot for the specified task. This data can also be used to update the available models if needed. 3) The task
specification and selected models are used to select one or more of the previously trained policies. 4) Given
the candidate policies, the selected models, and the robot’s experience data, a new policy is synthesized. 5)
The robot evaluates the policy obtained from the server, from where it has some options: it can continue to
adjust that policy by itself, or it can ask the server for a new adjusted policy. If we are able to determine
which models are better suited for a particular robotic platform, we can also use them for planning (LaValle
and Kuffner, 2001), with the learned control policies used as temporally extended motor commands, or
motor primitive for more complex tasks (Schaal, 2006), or options (Sutton et al., 1999b) In the following
sections, we provide some background and related work, describe the methods we have used so far, and
propose a series of questions to be addressed by our research. Finally, we propose a research plan to address
these questions.

Figure 3: Our vision of a cloud computing server for transferring motor policies, which allows robot clients
to download controllers which (in the best case) work in one shot or (in the worst case) require updating
the low fidelity models, or creating a new ones.

2 Related work

The Robot Learning Problem

In the fields of artificial intelligence and robotics, the problem of learning refers to the design of software for
autonomous agents in which the final design cannot be completely specified by the designers. Rather, a part
of it can only be finalized by interactions of the agents with the environment. As illustrated on Figure 4, we
refer to a robot to the conjunction of a set of sensors and a set of actuators that allow for interaction with the
physical world. An agent is the software that decides how to use the robots actuators, based on information
obtained from the robots sensors. In the following pages we use robot and agent interchangeably, except in

4

occasions where we want to differentiate between the hardware and the software.

Figure 4: A robot agent interacts with an environment and uses it sensors to perceive the state of the
environment. It can use these observations to update any internal model it may have of the world, and to
keep track of progress in a task. It may receive a reward/cost signal from the environment, or compute it
internally, which it uses to evaluate its performance.

The bootstrap scenario (Kuipers et al., 2006; Censi, 2012) provides a general description of the robot
learning problem. In the bootstrap scenario, a robot starts with no prior information about the world, its
morphology, or an interpretation of its sensors. The robot is given input from an uninterpreted stream of
sensor data, an output stream for its actuators (also uninterpreted), and the notion of causality; i.e. the robot
knows that the world can be described as a dynamical system, but it does not have an exact description
of such system. The goal of bootstrapping is to find a procedure for a robot that learns a sequence of
transformations that go from the uninterpreted sensor streams to control policies; i.e. an agent that can
learn to use any set of sensors and actuators.

Some theoretical results have been shown for low dimensional state and action spaces, with most of the
computational effort spent in interpreting the sensor data (see the recent work by Censi (2012)). An exper-
imental end-to-end robot learning system has been demonstrated in recent work (Levine et al., 2015a,b),
where an agent could learn to perform simple manipulation tasks with a 7-DOF2 articulated arm, from visual
feedback only. While these results are impressive, there is still a long way to go to apply such methods on
more complex morphologies, and more complex tasks. Since these approaches involve an agent that needs
to “learn everything”, the amount of data (interactions with the environment) needed to produce useful
behaviours is generally very large, except for very constrained tasks.

Using the bootstrap scenario as inspiration, we concentrate instead on the following problem: if an agent
knows the morphology and an interpretation of the sensing data from every robotic body it will be deployed
in, determine a procedure to transfer controllers from one robot body to another. This problem subsumes
that of learning from a low fidelity models, or set of such models, as in both cases the robot interacts with
different worlds on which the robot has knowledge about its sensor and actuators, and we wish to transfer
control policies between both (see Figure 5). To reiterate, we are interested in learning from simulators as
a way to reduce the amount of data needed from the physical robotic systems. To make the problem more
tractable, we put aside the problem of learning and transferring perception, and focus on transfer learning
of motor control.

Motor Control Learning in Robotics

The goal of motor control learning in robotics is to find control commands that produce a desired change in
the environment. The theory of Markov Decision Processes (MDP) provides an elegant way to formalize this

2Degrees of freedom.

5

Robot Body 1

Sensor
Output

Control
Input

Agent

Model
Control
Policy

Robot Body 2

Simulation

??

Figure 5: If we find a mechanism for transferring control policies between different robot bodies, the same
mechanism should work for transferring between a between a simulator and the robot bodies.

problem, as has been done in optimal control theory (Todorov and Jordan, 2002; Tassa, 2011; Haith and
Krakauer, 2013) and reinforcement learning (Schaal and Atkeson, 2010b; Peters and Schaal, 2008). Under
such formalism, an agent must optimize a control policy from cost functions that penalize undesired states
(alternatively, reward functions that attain a high value at desired states).

We consider discrete time problems, as our controllers and models are implemented on a digital computer.
At each time step t, the agent observes the state of the environment xt ∈ X , and chooses a control command
ut ∈ U according to a control policy π (ut | xt), producing a state transition drawn from the state transition
dynamics T (usually expressed as a distribution with density p (xt+1 | xt,ut)). The desired behaviour in
a particular task is specified by the instantaneous cost function c(xt,ut). The goal is to obtain an optimal
policy, which minimizes the expected cumulative cost

Vπ(xt) = Eτ

{
H∑
k=t

c(xk,uk)

}
(1)

where xt is the initial state, H is the robot’s planning horizon, and τ is the sequence of states {x0, ...,xH}
obtained by following policy π. The function Vπ(xt) is also called the value of a policy, or of the starting state
xt under the policy π. Here we focus on finite horizon tasks, but extensions to other formulations is also
possible (Sutton et al., 1999a; Baxter and Bartlett, 2001; Erez et al., 2012).

In continuous state spaces, approximate solutions to this problem can be found either by methods of
trajectory optimization (Abbeel et al., 2007; Pan and Theodorou, 2014) or policy search methods (Deisenroth
and Rasmussen, 2011; Levine and Koltun, 2013; Peters et al., 2005). We are more interested in the latter, as
we aim to obtain controllers that generate the control commands as a function of state, rather than sequences
of control commands. In general, given that the dynamics of a robotic system can be hard to model, two
main classes of approaches have been suggested in the literature. The first one is to learn a model of the
dynamics T using function approximation methods and then compute a policy based on the learned model;
this is the MBRL approach. In MBRL, the value of a policy is calculated via “rollouts”3 on the learnt model.
The second one aims to find improvements to the policy directly from interactions with the environment,
called model free methods. In this sort of methods, a policy is assumed to be parametrized by a vector θ;
e.g. a neural network (Levine and Koltun, 2013) or a weighted sum of radial basis functions. Although
successful, model free methods require a considerably larger experience dataset than model based methods.

Since our goal is to reduce the number of real world trials extensively, we focus on MBRL methods. We
have successful one such method, PILCO (Probabilistic Inference and Learning in Control) Deisenroth and
Rasmussen (2011), to obtain swimming controllers for a variety of manoeuvres on the AQUA class of under-
water legged robots (Meger et al., 2015). While this method allowed the robot to learn swimming controllers

3Using the model as a simulator and the known immediate cost to compute Vπ(x0)

6

in a small number of trials (5 to 10), the cost in terms of robot degradation and human supervision is still
very high. This is because building and evaluating models is computationally expensive: for every 15 sec-
onds of real robot experience it takes between 5 and 10 minutes of controller optimization. We managed to
make a better use of the deployment time by learning multiple tasks in parallel, using the idle time between
learning iterations to interleave the multiple learning tasks. Still, this meant that any single task would only
be learnt successfully after around 5 hours of deployment time.

We see two solutions to this problem: we can build an automated system for setting up and performing
experiments with a robot, or we try to do most of the learning in simulation. Since the first option can be
prohibitively expensive, we aim for the second one. This is in part inspired by the learning systems that have
been demonstrated in the computer animation community, that produce feasible kinematics for a variety of
simulated creatures.

Artificial Life and Learning from Simulators

The problem of motor control learning has also been studied in the physics based animation under the um-
brella of Artificial Life. One of the first demonstrations of emergent motor controllers was demonstrated
by Sims (1994), where a set of generative rules for morphologies and controllers, in conjunction with rigid
body simulation, were used to obtain swimming, walking and hopping creatures. Similar work by Terzopou-
los et al. (1994) described a procedure for an artificial ecosystem of various species of fish, which proved
realistic enough to simulate the actual behaviour of fish in the ocean.

More recent work has shown how the gaits of swimming creatures observed in nature can emerge from
black box optimization using a simulation of the creatures bodies as articulated rigid bodies immersed in a
fluid (Tan et al., 2011). However such impressive results came at a great computational expense: simula-
tions of 1 to 10 seconds took from several hours to two days. Similar work has been proposed for optimizing
central pattern generators for swimming simulation of humans Si et al. (2014), again at a very high com-
putational cost. The accuracy of these types of simulations is dependent on the computational resources
available. Since researches do not have access to infinite computations their models are only approximate.
A question that arises often in the computer animation community is: How aggressive can approximations
be in order to speed up computations, while still producing plausible physical behaviour?.

Some recently proposed methods have shown that it is not necessary to simulate the fluid around rigid
bodies to obtain plausible motions of submerged bodies (Weissmann and Pinkall, 2012; Xie and Miyata,
2014). In fact, that has been the approach used in naval architecture, aeronautics and traditional control:
produce models that are simple to compute and are valid in restricted regimes. The approach we have taken
to simulate the AQUA robot underwater is based on these ideas, as explained in section 3.1. By tuning a
small number of parameters, one can replicate in simulation the trajectories followed by physical objects
in the world. Thus physically based animation techniques may allow us to find the kinematic trajectories
that demonstrate successful executions of a given task, and use these trajectories to train the desired control
policies.

Using kinematic trajectories generated from physically based simulation is a promising idea, since recent
work on motor control learning has shown that it is possible to use trajectory information to guide the op-
timization of a general class of parametrized control policies; a method called Guided Policy Search (Levine
and Koltun, 2013). Thus, we could first have an agent learn to perform a task in a general physical simulator,
and then use simulated trajectories to obtain a policy on the physical robot. As we describe in section 3.3, this
can be done by supervised learning. Unlike Guide Policy Search, we could avoid generating the trajectories
on the physical robot, reducing the number of real world trials needed (hopefully to just one).

Learning robotic control from simulators is certainly not a new idea. But it remains an unsolved problem,
as evidenced by the large body of literature on the subject in recent years (Abbeel et al., 2006; Kober and
Peters, 2012; Lee et al., 2013; Cutler et al., 2014; Cutler and How, 2015). As mentioned by Sims (1994)
and confirmed by Todorov et al. (2012), if the simulation allows cheating, any optimization algorithm will
exploit it, producing physically unrealistic trajectories. In our research, we attempt to use the insights from
transfer learning techniques from a souce simulator to a target robot, in combination with a “inverse transfer”
in which we correct for modelling inaccuracies, pruning out unrealistic behaviours produced in the source

7

domain.

Transfer Learning

In our recent work (Meger et al., 2015), we experimented with learning swimming behaviours for a six
legged robot (see Figure 2a) using a simplistic simulated model (Georgiades, 2005), and attempted to use
the learned controllers and predictions from the simulator to speed up learning in the real world. While we
were able to learn control policies successfully both in simulation and on the real robot, combining data from
both domains was detrimental in terms of data efficiency. Our approach was naïve since we combined data
from two different “worlds” and assumed that they were produced by the same environmental variables.
Our approach suffered from model bias, leading to suboptimal controllers in the initial real world trials,;
thus requiring large amounts of data to compensate for our incorrect prior. These results were expected, but
slightly puzzling, as the behaviours learned in simulation qualitatively resembled reality. Our simulator did
not capture hydrodynamics with high fidelity. But according to expert users, it did replicate the behaviours
found in the real world when trying to control it via teleoperation.

As mentioned in the previous sections, if we assume that the kinematics of the robotic system are described
with some degree of accuracy, we could in theory attempt to transfer controllers from a simulator to a real
robot. One underlying assumption that we make is that we have a description of the morphology of the robot,
and that this morphology does not change between the simulation and the real robot body. So it makes sense
to think of transferring trajectories from one domain to the other. What happens if our assumptions break?
These questions have been studied in the area of Transfer Learning for Reinforcement Learning tasks.

TL techniques aim to use knowledge or experience data from one task domain to facilitate learning with
limited data on a different task, feature space, or distribution. The idea of TL has been studied for supervised
and unsupervised learning (Pan and Yang, 2010), and for RL tasks (Taylor and Stone, 2009). The idea is
that previous computations should be re-used whenever possible in order to speed up optimization on a
target task. This is related to the concept of reward shaping where the difficulty of a task is changed from
easier to harder tasks (Ng, 2003), or the concept of analogical reasoning in general artificial intelligence.
Transfer learning methods have also been proposed for cases where the state and action spaces change across
domains (Taylor and Stone, 2007); e.g. between the benchmark inverted pendulum, cart-pole, mountain car
tasks and simulated quadrotor tasks (Ammar et al., 2012, 2015b).

Although, there are many different transfer learning approaches, the pipeline of transfer learning is usually
the following:

1. The agent learns to perform a task in a source domain, described by (X (S),U (S), T (S), c(S))

2. It obtains mappings from elements of (X (S),U (S), T (S), c(S)) to the target domain (X (T),U (T), T (T), c(T))

3. It uses such mappings to transfer knowledge in the form of

• experience sample instances (xt,ut,xt+1, c(xt))

• Approximations to the state value function Vπ(xt), or state action value Qπ(xt,ut)

• state transition dynamics T

from the source to the target domain.

4. The agent continues learning in the target domain.

When transferring knowledge results in an improvement in the target we say that there is positive transfer.
When the opposite occurs, we call that situation negative transfer. In general, positive and negative transfer
is measured in terms of sample complexity: the number of trials, or samples, needed to achieve a threshold
performance. One of the drawbacks of the existing TL techniques is that there are no guarantees on when
negative transfer will happen; thus every TL method has the potential of resulting in negative transfer (Taylor
and Stone, 2009).

More related to our work, Cutler et al. (2014) propose to use a chain of domains, ordered from lowest
fidelity (a simulator that does not model any dynamics) to highest fidelity (running experiments on the

8

actual robot). In this case, the authors address the problem of inaccurate modelling by allowing the learn-
ing agent to update the transition dynamics of a source domain, T (S) with samples of a target domain,
(x

(T)
t ,u

(T)
t ,x

(T)
t+1, c(x

(T)
t)). While promising, this method was only shown to work in discrete state and action

spaces. Unfortunately such methods are not directly applicable to our target domain; i.e. mobile robotic
platforms with a high number of dimensions (12 DOFs in the AQUA robots). In more recent work (Cutler
and How, 2015) the same authors attempt to use PILCO to transfer policies and experience data from a
simulator to a physical realization of the robot (an inverted pendulum) by first learning a dynamics model
T̂ (S) in the simulated domain, and using it as a prior for the target domain. PILCO learns dynamics models
by fitting a Gaussian Process regression model to the experience data, so using the T̂ (S) as a Bayesian prior
for T̂ (T) is relatively straightforward.

The question we may ask is, why fit a model to an already available model (i.e., the true dynamics the
simulator T (S))? The authors claim that this is done in order to correctly integrate the uncertainty from
the simulated model into the predictions made by the model learned from real world data. As more data
from the real world becomes available the prior becomes less relevant. A drawback of this approach is that
as the robotic system becomes more complex, with more local minima when following the policy gradient,
more data will be needed to form an informative prior model. In such case, the learned prior model T̂
could become more expensive to evaluate than any simple simulator. As with previously described transfer
learning methods, this method provides no guarantees on the performance in the target domain.

9

3 Proposal Topic I: A Robotic System that Learns from Simulators

In this section we describe our approach for learning motor controllers, and for simulating articulated robots
underwater. Even though we describe an approach only for the underwater domain, it is general enough
that it should work with other types of robots.

3.1 Fast and Plausible Physically Based Models

We express the dynamics of a robotic system as the differential equation

ẋ = f(x,u, ψ) (2)

where ψ is a vector of parameters for the dynamics model. In simulation, we consider the state to contain
the robot’s position, orientation and linear and angular velocities, although this information might not be
available to the real robot. We are currently performing our simulations using the Open Dynamics Engine
(ODE), with a few modifications. In ODE, an articulated robot is represented in maximal coordinates; each
link in the robot’s body is modeled as a rigid body with 6 DOFs, and the body is held together through
internal forces that account for joint constraints. For each rigid body, we can express the dynamics of its
motions as [

M 0
0 I

] [
v̇
ω̇

]
=

[
ṗ

l̇

]
= Fext + Fint (3)

where v and w are the linear and angular velocities of the rigid body, p and l are the linear and angular
momentum, M is the mass matrix, J is the inertia tensor, Fext represents the external forces such as gravity,
or buoyancy and drag in the underwater domain, and Fint represents internal forces such as the ones
enforced by joints constraints and contacts. The forces required to enforce a joint constraint between two
bodies i and j from the following velocity constraint

Ji

[
vi
ωi

]
− Jj

[
vj
ωj

]
= 0 (4)

where Ji is a Jacobian matrix with one row for each constrained degree of freedom; e.g. for a hinge joint
(one DOF) Ji has 5 rows. The constraint aims to keep the relative velocities of the two bodies close to 0. For
walking robots, we also need to model contact constraints between the robot’s body and the ground. In ODE
this is done using the friction pyramid model (Baraff, 1994). At every point of contact between two bodies,
or a body with the ground, a contact force must be computed, which we can split into normal and tangential
components Fc = F⊥n+F‖,1t1+F‖,2t2. The contact force must satisfy the following linear complementarity
conditions

v⊥ ≥ 0, F⊥ ≥ 0, F⊥v⊥ = 0 (5)

where the first constraint states that the only allowed velocities are the ones where there is no interpenetra-
tion, the second constraint states that the contact force must be repulsive along the normal direction of the
contact, and the third constraint states that the contact force should only be applied if there is actual contact
(i.e. when v⊥ = 0). For the perpendicular forces we have

|v‖,i| < 0, F‖,i = µF⊥|v‖,i| > 0, F‖,i = −µF⊥|v‖,i| = 0, |F‖,i| ≤ µF⊥ (6)

The first two conditions model when there is slip in the contact: the friction force is proportional to the
normal force and acts in the direction opposite to the slip motion. The third condition states what happens
when there is no slip: the friction force must lie within the friction cone (otherwise, there would be slip).
Using the dynamics in Equation 3, along with the constraints in Equations 4, 5 and 6, we can solve for the
joint and contact forces using Dantzig’s algorithm (Baraff, 1994). Using a numerical integration scheme,
we can use Equation 3 to simulate articulated robots in vacuum. We note that this is not the only method
for solving the problem of contacts with multiple articulated bodies, and that this remains an active area of
research in robotics (Drumwright et al., 2012; Todorov et al., 2012; Drumwright, 2015).

10

To simulate underwater robots like the AQUA platform we also need to include hydrodynamic effects. So
we modify Equation 3 as ([

M 0
0 I

]
+ KF

)[
v
ω

]
= Fg + Fb + D

[
v
ω

]
+ Fint (7)

Here KF and D are the added mass and drag tensors, which depend only on the geometry of the rigid body,
and Fg, Fb are the forces due to gravity an buoyancy acting on the center of mass of the rigid body. For
the gait learning work using the AQUA robot (Meger et al., 2015), we used the approach of modelling the
robot’s body and its paddles as boxes to obtain KF and D, which resulted in a model with 15 parameters
per rigid body to account for hydrodynamic effects (Georgiades, 2005). We are currently integrating more
recent work on underwater rigid body simulation (Weissmann and Pinkall, 2012) to reduce the number of
parameters to 3 (the mass of the robot, the density of the fluid, and a scaling factor that accounts for some
unmodelled quantities), but requiring a CAD model of the robot to precompute quantities related to the
hydrodynamic effects. For the majority of robotic systems in existence there are CAD models available, so
obtaining one would not be a problem.

We have successfully integrated our physics based underwater simulation to the Gazebo robot simula-
tor (Koenig and Howard, 2004), achieving simulations that run 10 times faster than real time.The proposed
model is fast as it does not require modelling the fluid surrounding the robot. This benefit comes at a price:
since we are not modelling turbulence in the fluid caused by the robot’s motion, a swimming robot like
AQUA, or an underwater vehicle using rotating propellers, will not generate thrust. In our prior work, we
used a simple model that computes thrust as a function of periodic motion of a rigid body. An alternative
that we propose is to use the data from real world trials to account for the lack a of thrust forces:

ẋ = f(x,u, ψ) = fsim(x,u, ψsim) + fcorr(x,u, ψcorr) (8)

In this case we need to careful to not incur in “double dipping”, data used to obtain the parameters correction
model ψcorr cannot be used to estimate the parameters of ψsim., unless we jointly estimate both vectors. We
note that the simulated model is linear in the parameter vector ψ, except for the friction coefficient µ.

Coming back to the bootstrap scenario, this might seem like giving a robotic agent a considerable amount
of prior information. But we note that what the agent has at its disposition is a world in which in sensor
information is interpreted, and the ability to reset to an initial position. Besides, the point that we want to
make is that giving an approximate model is better than giving it nothing, in the context of motor control
learning. Now the problem of using these physically based models is that, as has been pointed out in the
literature Sims (1994); Todorov et al. (2012), if the physics engine allows any shortcut, it will be exploited
by the optimization algorithm. Likewise, if the optimal behaviour in the real world does not produce an
optimal behaviour in the simulator, learning in the prior model will result negative transfer.

3.2 Improving Inaccurate Models

The usual purpose of simulation in robotics is to test the validity of perception and control algorithms. In
this proposed research, we take the view that a robot can transfer knowledge from simulation to a real robot,
so as to offload learning to a server and minimize the amount of real world trials in learning a task. Even
though authors in the field have expressed that the only useful simulator is one that is accurate (Schaal and
Atkeson, 2010a; Kober and Peters, 2012) or trained from the robot’s experience, we hypothesize that using
trajectory information (ignoring the control commands) will allow us to transfer policies from simulation.

However, this relies on the assumption that the trajectories produced by the simulator are feasible in the
real world. When this does not occur, we need to update the simulator parameters to correct for modeled
dynamics, and fit a correction term to account for unmodelled dynamics; this is the reason why we express
the dynamical models as Equation 8. To do this we suggest the following procedure. First we use a numerical
integration scheme to transform Equation 8 into discrete time dynamics. For example

xt+1 = F (xt,ut, ψ) = xt + hf(xt,ut, ψsim) (9)

where h > 0 is the simulation time step. Every time we run a policy πk in the real world, we obtain a
dataset D(T,πk) consisting of state-action-state triples (xt,ut,xt+1) for t ∈ [0, ...,H − 1]. If the policy follows

11

a trajectory close to the one predicted in simulation we are done, otherwise we need to update the simulator.
We follow the approach of Nguyen-Tuong and Peters (2010) to estimate F with Gaussian Process regression,
using the simulated dynamics as a mean prior. After this is done, a new control policy πk+1 is obtained by
using the new simulated model and we repeat the process.

The previous procedure is just the textbook System Identification procedure Ljung (1998). Recent work
by Ross and Bagnell (2012) proposed a method for selecting the appropriate dataset to learn the parameters
of a model. It consists of selecting a combination of state-action samples (x,u) from D(t,πk) and some
exploration strategy ν (e.g. expert demonstrations), evaluating the transitions using the real world or a
generative model to obtain state-action-state triples, and using the resulting dataset to fit the model. We aim
to investigate this procedure further in our research, extending it to multi-step predictions.

Ideally, we should fit the parameters of fsim and fcorr minimizing the long term multi-step prediction
error, as described in the literature for estimating helicopter dynamics (Abbeel et al., 2005; Punjani and
Abbeel, 2015). The reason for using a multi-step objective is that the real world dynamics, particularly
in the underwater domain, depend on unobservable quantities like the state of the fluid surrounding the
environment.

Our procedure is done under the assumption that we have access to the internals of a simulator. In the
case we don’t, we propose two options. The first one, similar to the work by Abbeel et al. (2006), is to just
fit the bias term fcorr. This amounts to using the simulator as a mean prior for estimating the model (Ha and
Yamane, 2015; Cutler and How, 2015). As mentioned before, this approach would still make bad predictions
in regions of the state space not visited by the real robot. The second option is to fit a function that maps
predictions from the simulator fsim to predictions from the real world. More specifically, we would like to
obtain a function G such that

x
(T)
t+1 = G(F (xt,ut, ψ)) = G(xt + hf(xt,ut, ψsim)) (10)

Note that the second option is a generalization of the first, but may include other effects like affine trans-
formation of the state or the state derivatives, along with other types of non linear transformations. Such
approach also remains to be investigated further. We also recently learned about the work of Konidaris and
Doshi-Velez (2014), in which the authors describe a similar class of problems under the paradigm of hidden
parameter Markov Decision Processes (HIP-MDP). In HIP-MDP, a set of MDP tasks is related by a set of latent
parameters. In our case, such latent parameters could correspond to ψsim, and idea that we are considering
for our future directions.

3.3 Policy Transfer

In this section we describe our current approach for transferring policies between a source simulator and
a target domain, along with some preliminary results on the benchmark cart-pole task. The methods for
learning control policies that we have implemented so far include Probabilistic Inference and Learning in
Control (PILCO) (Deisenroth and Rasmussen, 2011) and Probabilistic Differential Dynamic Programming
(PDDP) (Pan and Theodorou, 2014). Our goal is to determine if it is possible to get good performance in the
first trial of a task on a real robot, by transferring policies learned from simulators. Our approach here is to
compute a policy adjustment function, that maps policies from the target to the source domain, illustrated in
Figure 6.

Using the simulated environment described in Section 3, we learn a control policy for a particular locomo-
tion task, producing a policy π(S). We assume that the kinematic trajectories of the simulator are feasible in
the real world, ignoring controls and forces. Formally, we assume that if the policy produces a trajectory, or
set of trajectories, of the form τ (S) = {x(S)

0 , ...,x
(S)
H }, then for every t ∈ [0, ...,H − 1] there exists a control

command u
(T)
t and pair of states x(T)

t ,x(t+1) in the target environment such that

x
(S)
t ≈ x

(T)
t ,x

(S)
t+1 ≈ x

(T)
t+1 =⇒ p(x

(T)
t+1 | x

(T)
t ,u

(T)
t)� 0, according to T (T) (11)

We implement the notion of state similarity of the first condition via a simple euclidean distance metric.
However, there are several situation in which this metric would be too restrictive. For example, in a mobile

12

(a) Behaviour in the source do-
main

(b) Desired behavior in the target domain

Figure 6: The goal of the policy adjustment πadj is to replicate trajectories from the source domain in the
target domain. We do this by generating a dataset (x

(S)
t ,u

(S)
t ,u

(T)
∗), where u

(T)
∗ = g(T)(x

(S)
t ,x

(S)
t+1), and

training πadj by supervised learning; e.g. GP regression or locally weighted linear regression

robotic system, the change in state produced by a particular control action may be invariant to translations
and rotations. A more appropriate metric would measure state similarity by looking at the relative state
transitions. One has to be careful with this approach because some relative state transitions that look similar
might be realized by very different control commands. One possible approach would be to compute an
approximate bisimulation metric (Ferns et al., 2011), or to obtain a metric via unsupervised learning (Ammar
et al., 2014b).

We also assume that it is possible to estimate the inverse dynamics of the robot system as a function
g(T) : X (T) × X (T) → U ; i.e. a function that takes as input two states and outputs the action that produces
the transition between them. Since we will only query information about states that are “close” in time and
in the state space, we may safely assume that g(T) exists. Given these assumptions, we propose the following
scheme for transferring a policy. For any given motor control task that we want to learn:

1. Execute a learning algorithm in the source domain (X (S),U (S), T (S), c(S)), obtaining:

(a) An experience dataset D(S), consisting of state-action-state triples: (x
(S)
t ,u

(S)
t ,x

(S)
t+1))

(b) A current best policy π(S)

2. Set π̄(S)
0 = πS . Optional: use a learned4 or user provided source to target mapping.

3. Execute π̄(S)
k in the target domain (X (T),U (T), T (T), c(T)), obtaining:

(a) An experience dataset D(T), consisting of state-action-state triples: (x
(T)
t ,u

(T)
t ,x

(T)
t+1))

4. Using D(T), estimate (or update) the inverse dynamics of the target domain g(T) : X (T) ×X (T) → U

5. Use D(S), D(T) and g(T) to estimate a policy adjustment function πadj : X × U → U (illustrated in
Figure 6)

6. Set π̄(S)
k+1(x) = πadj(x, π̄

(S)
0)

In Step 5 of the previous procedure, we find a, possibly nonlinear, transformation from source to target
policies. We do this by generating a dataset with samples of the form (x

(S)
t ,u

(S)
t ,u

(T)
∗), where u

(T)
∗ =

g(T)(x
(S)
t ,x

(S)
t+1). The first two items represent the action picked by the source policy at some target state.

The third item is the action that replicates the behaviour of the source policy in the target domain. We use
this dataset to train πadj by supervised learning.

4We discuss how such a mapping could be learned in Section 4

13

Figure 7: The cart-pole scenario: We tested our policy transfer scheme by varying the cart mass, pendulum
mass, and friction coefficient at the target domain. The original parameters we used where g = 9.82m/s2, l =
0.5m,m = 0.5kg,M = 0.5kg, b = 0.1N/m/s, where g is the acceleration due to gravity, l is the length of the
pole, m the mass of the pendulum, M the mass of the cart, and b the coefficient of friction. The control input
is a horizontal force applied to the cart (in black), and the goal is to balance the pole (in red) in an upright
position.

We experimented with this method in the cart-pole domain, where the goal is to balance an inverted
pendulum on a mobile cart on rail. We used PILCO to learn tasks from scratch, as illustrated in Figure 7. We
are currently in the process of integrating PILCO with the simulator learning setup of Section 3.2. Learning
the task with PILCO required 10 iterations in near 40 minutes of computation on a 2.53 GHz Intel Core i3
laptop with 4GB of RAM. Figure 8 shows the number of iterations required on average, when varying one
of the cartpole simulation parameters. Our transfer method took about 5 minutes to transfer the same task,
running unoptimized code. Given the relative simplicity of this method, we were surprised that it worked
at all in the successful cases. We were less surprised by the failure modes, i.e. policies are very sensitive to
a change in the pole length since the optimal trajectory deviates in the target domain deviates considerably
with respect to the original one. Our current goals for this algorithm are to test on the data we collected
with the AQUA robot (Meger et al., 2015), and close the loop by updating the simulator with the methods
described in Section 3.2.

One major drawback with this naïve approach is that it is highly dependent on the quality of the initial
policy. An alternative approach is to modify the policy parameters directly, which we aim to test in our future
research. But our idea behind estimating the πadj transformation is that it can be used for different tasks,
since πadj is a function of the state and the desired control command. The selection of which data points to
use to train πadj requires more attention. Selecting starting states from the source domain x

(S)
t is desirable

as it defines the trajectory that we want to follow, but it has the problem that we may not have enough data
in D(T) to compute the inverse dynamics g(T) for such states. On the other hand, selecting starting states
from the target domain x

(T)
t is desirable because this corresponds to regions of the state space where we can

compute g(T). However these states might have not been visited when training the source policy, and would
not help bringing the robot closer to the optimal behaviour.

A possible way of improving our method is change the learning method used in simulation, for a trajectory
optimization method and use multiple simulated trajectories to train a policy for the real robot. The stages of
such learning system would roughly be: 1) Use trajectory optimization algorithm (e.g. DDP) in simulation
to generate multiple desired trajectories, 2) perform supervised learning to train πadj for transferring the
learned policy to the target domain, 3) train a parametrized policy in the target domain from mapping the
control command of the simulated trajectories through πadj . We could use the simulated trajectories in
conjunction with the target experience data to train the policy directly, but learning πadj has the potential of
working for multiple tasks.

Unlike the prior work on using a simulator in RL (Kober and Peters, 2012; Cutler and How, 2015), we are
not continuing to optimize the policy in the target domain, using the source policy to seed the optimization.
Instead, we use our assumption to synthesize a control policy through the policy adjustment function πadj ,
which should work for multiple tasks. Our approach has strong similarities with the Dataset Aggregation

14

(a) Transfer to cartpole with a 200% friction increase (b) Transfer to a cartpole with 1000% friction increase

Figure 8: Sample results when varying the friction coefficient across transferred domains. The dotted
line represents the cumulative cost of the source policy π(S) in the source domain. The solid line is the
average performance of the transfered policy across 5 trials with random initial conditions; i.e. drawn from
a Gaussian distribution with zero mean and variance of 0.1 for each state dimension. The markers show the
cost of individual performances at each trial. Notice how we got the transfered policy to work in the first
trial, after one run of the original policy, for both cases, with occasional failures with high cumulative cost.
We hypothesize the failures, which make up a minority of the trials, were due to a source policy that was not
very robust.

DAGGER algorithm (Ross et al., 2010), except that we have no expert that could demonstrate the trajecto-
ries, other than the policy trained on a different domain (a simulator). A key question that remains to be
investigated is that of deciding if a model is good enough to try the policy transfer approach, or if we need
to update the model either by fitting the parameters of the existing simulator model, or constructing a new
one.

3.4 Evaluating and Selecting Source Models

Knowing when a model is good enough for transfer is a key issue we need to address if we aim to transfer
data to and from a simulator. Applying a policy learned from an inaccurate simulator directly on a target
robotic platform will lead to suboptimal performance (Atkeson and Santamaría, 1997); i.e. to negative
transfer. Here we take a look at two questions: how to decide when a model needs improvement, and how
to select a model, or combination of models, if multiple are available. This means that we want the agent to
be self aware, since it has to make decision on when to try a policy in the real world and when to improve it
in the real robot; which brings the problem to the domain of active learning.

Recent work on Knows What it Knows (KWIK) learning provides a theory for how to approach the question
of self awareness (Li et al., 2011). In the KWIK framework, a learning algorithm can decide to make a
prediction about an outcome in the environment, with error smaller than ε with probability at least 1− δ, or
report that it can’t make a prediction, denoted with the symbol ⊥. When applying this framework in a robot
learning setting, the idea is to encourage gathering more experience in situations where the learning agent
would report ⊥. By using an exploration strategy that encourages this, it can be demonstrated that certain
class of models can be learned with a number of samples that is polynomial in 1/ε, 1/δ and a measure of the
size of the hypothesis space.

In our case it is not clear we can obtain such bounds, but the ε, δ parameters and the ⊥ symbol can be
integrated into a scheme for deciding to update the model vs transferring the policy. The agent would

15

decide to update the model by comparing the original trajectories from the simulator and the executed
trajectories in the real robot. For every triplet (x

(T)
t ,u

(T)
t ,x

(T)
t+1)) obtained from the real robot, we can

evaluate the prediction that the simulated model would make. From this set of predictions, we can compute
the probability of making an error smaller than ε. If it is at least 1− δ, we decide to use the dataset to train
the policy adjustment πadj , otherwise we use the dataset to update the model and continue learning in the
simulator. A similar approach was proposed by Cutler et al. (2014) but for discrete state and action spaces.

Measuring the probability of making a prediction error can be done by using Gaussian Process regression to
fit our simulated model from Equation 8; i.e. we assume our model f(x,x, ψ) will be drawn from a Gaussian
Process

f(x,x, ψ) ∼ GP
(
fsim, k

([
xA
uA

]
,

[
xB
uB

]))
(12)

where k is a kernel function that models how the output of the dynamics co-vary for any given pair of input
vectors

[
xA,uA

]T
,
[
xB ,uB

]T
, and we assume that our simulator is a prior mean function; see (Rasmussen,

2004) for a more complete treatment. Every prediction made by the fitted model with GP regression has is
modelled as a Gaussian distribution, so it is straightforward to determine the probability of making an error
smaller than ε by integrating the density function of the predictions from the GP model. Using GP regression
for for fitting the dynamics has also the benefit of interpretability. If we assume that the underlying dynamics
are deterministic (true for the simulator), then the stochasticity of the model represents model uncertainty
due to unmodelled dynamics.

Once we have established a method for training a simulated model, we can use this method to produce
an ensemble of models using different parameters or training data; e.g. learning swimming gaits in fluids
with different characteristics. A robot that has access to such ensemble, now faces the problem of model:
some models will be better suited than others for any particular combination of task and environment. The
problem of model selection will be more clear when dealing with different robot morphologies, where a robot
must select models from robots that are the most similar to itself. A clean formalization of this problem may
be given by following the Bayesian model selection approach. Similar to the responsibility signal technique
of Doya et al. (2002), if we get a dataset D(T) from trajectories executed in the real robot, we can compute
the likelihood of such dataset being predicted by any model f̂i, i ∈ [1...n] of the ensemble. We can measure
which model is the most likely by computing

P
(
f̂i | D(T)

)
=

p
(
D(T) | f̂i

)
p
(
f̂i

)
∑
j p
(
D(T) | f̂j

)
p
(
f̂j

) (13)

where p
(
f̂i

)
is a prior that encodes some knowledge on which model should be used for the particular

target. If we assume that the data samples are uncorrelated and assume a Gaussian Process distribution
(Equation 12) for our models, then computing the term p

(
D(T) | f̂i

)
is straight forward. In the case of

trajectory following, the assumption of uncorrelated samples does not hold, since they were drawn from a
distribution induced by the applied policy, and because they are temporally correlated. An appropriate way
of computing this term should account for such correlations, and is a subject of ongoing research.

16

(a) A robot on a skateboard (b) Another robot on a skateboard: the cartpole scenario

Figure 9: A humanoid robot on a skateboard can be seen as a considerably more complicated task than
balancing a cartpole. Still, given that the analogy is valid, is there any knowledge that could be transfered
from one domain to the other? The robot on the left is the PLEN robot http://www.plen.jp/index_en.
html. The image on the right is a snapshot of the cartpole balancing task using PILCO (Deisenroth and
Rasmussen, 2011)

4 Proposal Topic II: A Robotic System the Learns from Multiple Robot
Morphologies

A natural extension to the framework for learning from simulated environments is to try transferring control
policies between related tasks across different morphologies. For instance, policies and experience obtained
from learning how to balance a cart-pole could be very useful in learning how to balance a humanoid robot
on a skateboard (Figure 9), if the learning agent can determine how to map the parts of theformer to the
parts of the latter. This idea might sound questionable, because the increase in complexity from a cartpole
balancing task to humanoid balancing task. However, the advent of 3D printing provides some justification
for our ideas.

With 3D printing we have the possibility of manufacturing robot bodies at low cost with fast iterations.
Intuitively, any knowledge gathered about the dynamics of the world will be useful across iterations of the
robot’s morphology; i.e. we may re-use models in order to find policies for a new robotic system. If the
changes in the robot’s morphology are incremental, then transferring policies across different versions of
the same robot should speed up the goal of finding controllers for particular behaviours. If we assume that
the policy transfer mechanisms between iterations is composable, then it becomes conceivable that we can
transfer policies from a very simple robot to a highly complex one, by chaining the transfer mechanisms of
robots with intermediate complexity. However, this is highly speculative as we would need to demonstrate
that the assumption of composable policy transfer mechanisms is valid.

We don’t think this problem will be solved anytime soon, so we propose two research goals that could help
us going in that direction. One is to develop techniques that allow us to compute sensible similarity metrics
between robotic systems for particular tasks. Provided that the robotic systems do have some underlying
similarity which can be treated, at least locally, as a metric, we can use this to select the most appropiate
source model to learn from. The other goal is finding mappings between the descriptions of the robotic
systems. This, combined with simulated environments as the ones described in Section 3, will assist in
realizing our vision of the cloud robotic learning system depicted in Figure 3. As we haven’t done much
work on these topics, this section is slightly speculative. But these are the research ideas that motivated the
idea of learning from simulators in the first place.

To our knowledge, there is no prior work on transfer learning across different physical robot morphologies.
The closest work we have found is the recent work by Ammar et al. (2015a, 2014a), which is based on
learning cross-domain mappings in a with a similar scheme to the one we propose in Section 3.3, but using
intermediate projection spaces between domains, where the similarity between states can be computed as
some affine metric. But no such approach has been demonstrated for transferring motor tasks between

17

http://www.plen.jp/index_en.html
http://www.plen.jp/index_en.html

different physical robotic systems. We suspect that this is because the computational requirements of such
methods are very demanding.

4.1 Finding similarities and mappings between robotics systems

One of the first descriptions of the problem of finding mappings across different robotic learning tasks was
discussed by Taylor and Stone (2007), where mappings were provided by a human designer. In that work,
while no task was tried on a physical robot, did demonstrate that if a mapping between states and actions is
provided, value functions learned in the source domain could greatly improve learning in a target domain.
In subsequent work, the same authors demonstrated the use of such mapping to transfer policies across do-
mains. Providing the mappings required an inspection by the designer to determine which state dimensions
and which actions were “similar” across domains, successfully speeding up the learning process in the target
domain.

However, we believe such approach might be very hard to apply in continuous state and action spaces;
we might be able to give a qualitative description of similarity by comparing state instances, but providing a
mapping a priori could be more challenging. Taylor and Stone (2009) suggest that learning the task mapping
from observed data in the source and target domains may be more appropriate, listing some of the methods
that existed at the moment of their publication. Most of the methods listed required some input from the
designer in the form of allowed mapping rules (i.e. grouping state variables that correspond to distances,
positions, angles, etc).

One of the proposed approaches obtained the state and action mapping through supervised learning, in a
similar manner to the approach we described in Section 3.3, and used it to transfer instances from the source
experience dataset to the target domain. The transferred experience was used to guide exploration during
learning in the target task. However, it only allowed for mapping state variables, whereas a more general
approach would need to map regions of state space. In addition, their proposed approach did an exhaustive
search for the appropriate inter task mappings, a method for which the search space grows exponentially
with the number of dimensions, making their method less appealing for robotics applications.

Very recently, a variety of approximate methods for finding task mappings through projection and dimen-
sionality reduction have been proposed to learn mapping between source and target domains from data.
One example is the idea of manifold alignment by Wang and Mahadevan (2009). In manifold alignment, the
idea is to use dimensionality reduction techniques to transform two disparate datasets into manifolds with
the same number of dimensions, then finding a mapping between the two manifolds to combine, or directly
finding a common lower dimensional manifold for the two datasets. Bocsi et al. (2013) propose to use
Principal Component Analysis (PCA) from the source and target domain datasets, heuristically specifying
a common number of principal components to use, and fitting an affine transformation between the two
low dimensional manifolds. Then, the data from the source domain is used to fit a kinematic model for the
target domain – their application was learning kinematic models with data from multiple articulated robotic
manipulators.

The work by Ammar et al. (2012) proposes projecting the datasets to higher dimensional spaces with the
same number of dimensions, then learning a mapping between the two using supervised learning. Their
approach is then used to transfer data samples from the source domain to the target domain, and continue
learning in the target domain. Their work has recently been extended (Ammar et al., 2015b) to instead use
the manifold alignment approach of Wang and Mahadevan (2009) to transfer policies between simulated
domains. The idea of manifold alignment presents a powerful way of transferring policies across related
domains, however the question of whether they work for physical robots is still waiting to be answered5.

We are interested in trying the approach of manifold alignment for learning cross domain mappings be-
tween different robot morphologies, which relies on the assumption that the exists a common latent space
shared by the source simulator and the target domain. A couple questions that we aim to investigate are:
When does this assumption break? Is it always beneficial to use this technique? How can we apply this to
the case where we want to combine data from a large number of simulated models or robot morphologies?

5In this situation it is important to remind ourselves of the words of a renowned physicist: “In theory, theory and practice are the
same. In practice, ...”

18

As stated in Section 2 the question of whether a particular mapping will produce negative transfer remains
an open problem, and it is one that we wish to investigate.

4.2 A cloud architecture for learning controllers across robotic morphologies

The last step in realizing our vision depicted in Figure 3 would be putting all of the pieces from the previous
sections together. This possibly requires a great software engineering effort, and we are not claiming that
we could rely on the capacity of a single graduate student and his supervisor to carry it out. But, as we note
in the next section, we do have some of the pieces together in an initial version of the learning infrastructure
used for our previous experiments (Meger et al., 2015) and have developed a server based platform for
planning robotic waypoint navigation tasks (Gamboa-Higuera et al., 2012). In this very short section, we
are just going to state that the final goal of our research is to demonstrate one such system. This is highly
speculative, as its realization depends on the success of the components described in the previous sections.

The idea of a cloud based system6 for offloading the computations of robotic systems has mostly been
explored for visual tasks like navigation and grasping, where object detection and tracking, detecting affor-
dances, and simultaneous localization and mapping are needed (Waibel et al., 2011; Kehoe et al., 2013). In
such cases the robots offload the task of interpreting sensor data to the cloud. We aim to extend the work on
this area by demonstrating a learning system where any robot could upload its morphology, some experience
data, and a specification of a task, to obtain a policy that, in the best case, works in a single shot or, in the
worst case, enables the collection of new data to improve the existing models.

We would like to try an experiment similar to the work by Song et al. (2015), where a simulated model is
used to design a 3D printed robot. Instead of designing the robot, we would take a design from the internet,
train a policy in simulation, 3D print the model and test the policy on the 3D printed robot. We believe this
is achievable in a shorter term than the one required for a cloud based system of Figure 3.

5 Proposed research plan

In this section we list the progress we have made to this date, and the proposed milestones to evaluate
progress in our research plan

5.1 Progress to date

Most of the work we have done so far has been listed in Section 3. Here we present a list that summarizes
our current progress.

Models for Physically based Simulation of Robotic Systems: We have implemented a simulation module
that accounts for hydrodynamics, which can be used to model bodies immersed in a fluid; e.g. underwater
robots, or fast moving objects in air (Section 3.1). We have described a group of methods for updating
simulator parameters, and fitting a correction term that accounts for unmodelled dynamics. We currently
have an implementation of the semi-parametric method described in 3.2. We have integrated our software
with the Gazebo Robot simulator (Koenig and Howard, 2004), and provided a drop-in replacement interface
to switch between a real and simulated AQUA robot using the Robot Operating System middleware Quigley
et al..

Policy Transfer Methods: We have also integrated existing policy search (Deisenroth and Rasmussen,
2011) and optimal control (Pan and Theodorou, 2014) methods into the ROS framework, in order to use
them with the AQUA robot. We have successfully used this software to run our first experiments on learning
motor behaviours from scratch with the AQUA robot, and our first experiments with naïve bidirectional
transfer of experience and policies between the simulator and the real robot, work that was presented at
ICRA 2015 (Meger et al., 2015). We have started our first approach to policy transfer, which we called policy
adjustment. We have tested this approach on a benchmark RL task with promising results, and have the
infrastructure ready for testing in on the AQUA robot.

6For a detailed survey of the development of the cloud robotics idea see Kehoe et al. (2015); Cameron and Hurd (1984)

19

Model Evaluation and Selection Methods: We have written software for the model evaluation scheme
described in Section 3.4, which aims to decide when to improve an existing model, or when to optimize the
policy adjustment. We are currently running experiments with this method. The model selection method
described in the same section is still at the preliminary design stage.

Infrastructure for Robotic experiments: In the past year, we have been developing a offsite learning
system that allows us to run multiple robot learning tasks in parallel in a remote server, making the best
use possible of the idle time between learning iterations. We have integrated the PILCO and PDDP algo-
rithms into a Python package with a common infrastructure for learning models, defining cost functions and
optimizing policies. We aim to extend this software package with additional learning and optimal control
methods. This should allow us to test our transfer algorithm with a heterogeneous class of optimizers, policy
classes and cost functions. This work has been integrated with the ROS framework.

5.2 Proposed Milestones

To guide and evaluate progress towards our research goals, we propose the following list of milestones. This
is a tentative list, that will evolve according to any new development we make. These first items correspond
to our short term goals, for which we can estimate dates with more certainty.

• Policy Transfer Experiments on a Real Robot: Our most immediate milestone is to test the approach
we described in Section 3.3 for a physical robot, which is the goal of this thesis. We are planning to
run such experiment by the end of the Summer of 2015, with preliminary tests using data from our
prior experiments happening during the course of the Summer term.

• Autonomous Model Evaluation Experiments on a Real Robot: The approach for model evaluation
described in Section 3.4 will be tested first in simulation, then on the real robot. We aim to test this
approaches before the end of the Fall 2015 term.

• Additional Policy Transfer Methods: The approach we described in Section 3.3 might not work in
practice. We have discussed how to use other policy transfer schemes based on matching trajectory
data for training a policy directly in the target domain, without the requirement of learning a policy
in the simulated domain. This is research that will be carried out during the course of the year 2015,
as we gain more insights from the original approach. Candidate methods for policy transfer are likely
to be based on prior work that relies on trajectory optimization techniques (Atkeson et al.; Levine and
Koltun, 2013; Pan and Theodorou, 2014).

• Model Selection: While we will keep investigating methods for model selection, we currently do
not have multiple models to select from. As our software becomes more stable, we aim to test our
algorithms with a wider class of mobile robotic system for which we have access. Our current plan
is to obtain multiple models for one particular robot morphology, the AQUA robot, under a variety
of settings that drastically change the dynamics of the robot: changes in water density (fresh vs salt
water), changes in robot ballasting, and a possible new version of the AQUA robot. Data for these
models will be collected during the 2015-2016 academic year. Experiments with model selection are
likely to happen offline, during the same timeframe. Ideally we would like to do at least one field
experiment where we can validate the model selection procedure during the first half of the year 2016.

The following list of milestones constitute our medium term research plan, to be carried out before the end
of the 2016-2017 academic year.

• Additional Model Selection methods: One very interesting approach for dealing with model uncer-
tainty is to treat the model parameters as latent variables Konidaris and Doshi-Velez (2014). We would
like to explore such methods in a setting with multiple simulated models; i.e. we would like to combine
the idea of latent simulator model parameters, with latent simulator model classes.

• Obtaining mapping and distance metrics between different domains: As recent research has
shown (Taylor and Stone, 2007, 2009; Barrett et al., 2010; Ammar et al., 2012, 2014a, 2015a,b),

20

finding the appropriate mappings between the source and target domains state and action spaces is
a critical piece for any knowledge transfer scheme. Our goal is to apply similar techniques in our
research thread on learning from multiple simulated models.

• A cloud based server for heterogeneous robotic systems: We plan to extend or, more likely, replace
our current offsite so that we can a) collect experience data from multiple robots, b) query an extensive
set of simulated models, c) learn policies in such models, and d) query the system for an appropriate
prior policy given a task specification and robot morphology. We already started work in this direction,
as described in the Infrastructure for Robotic experiments item.

The following items are our “long shot goals”, for which the progress on the prior tasks is critical, and
could possibly require starting another PhD.

• Online learning on a mobile robot: Given a starting policy, or set of policies from a simulator, we
would like to continue to improve the policy online in a mobile robot with intermittent access to the
internet. This requirement will make a large class of existing policy search methods impractical. We
would like to see this happening in the near future, but we do not have a clear idea on how to proceed.
Hopefully, our own learning during the next year will allow us to transfer some of our old ideas to a
real time setting.

• Test our transfer ideas with a 3D printed robot: We would like to include the robot morphology
into the policy optimization loop, such that we can adapt policies from one morphology to the next
one. Recent approaches have shown that it is possible to obtain better performance with appropriate
transfer, than with random initialization or with tabula rasa learning. We would like to test 3D printing
different robot bodies, and use the same library of policies and models to try to perform various motor
tasks on them. Candidates include the Aracna (Lohmann et al., 2012) or Poppy (Lapeyre et al., 2014)
platforms, but we would likely start with simpler platforms.

6 Conclusion

We have presented a summary of our ideas on a contribution to the Robot learning problem, exemplified by
the bootstrap scenario (Kuipers et al., 2006; Censi, 2012). We take the view that physically based simulation,
while inaccurate, still provides enough information to a robot about certain general rules; e.g. gravitation,
contacts and friction forces and hydrodynamics. These are rules that would be very hard to generalize in
the bootstrap scenario, where a robot must learn how to interpret its sensor and actuator data in order to
produce repeatable behaviour. As knowledge acquired from a simulator may not be directly applicable on
a real robot, we propose a series of techniques for bidirectional transfer between a simulated model and a
target environment.

We propose to extend these ideas to transferring information between different robot morphologies via our
learning from simulation framework. We presented some of our preliminary ideas on the subject, along with
a proposed research plan to help us reach our goal. We envision a learning system that can run in the “cloud”
providing a motor control learning service for robots deployed across different domains. Such service would
allow for offloading the learning and exploration work to a simulated environment, drastically reducing the
amount of data that a robot would need to learn to perform a task.

References

Pieter Abbeel, Varun Ganapathi, and Andrew Y Ng. Learning vehicular dynamics, with application to mod-
eling helicopters. In Advances in Neural Information Processing Systems, pages 1–8, 2005.

Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using inaccurate models in reinforcement learning. In
Proc. of the Int. Conf. on Machine Learning (ICML), 2006.

21

Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An application of reinforcement learning
to aerobatic helicopter flight. Advances in neural information processing systems, 19:1, 2007.

Haitham B Ammar, Karl Tuyls, Matthew E Taylor, Kurt Driessens, and Gerhard Weiss. Reinforcement learning
transfer via sparse coding. In Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1, pages 383–390. International Foundation for Autonomous Agents and
Multiagent Systems, 2012.

Haitham B Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-task learning for policy
gradient methods. In Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 1206–1214, 2014a.

Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Decebal Constantin Mocanu, Kurt Driessens, Gerhard
Weiss, and Karl Tuyls. An automated measure of mdp similarity for transfer in reinforcement learning. In
Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014b.

Haitham Bou Ammar, Eric Eaton, José Marcio Luna, and Paul Ruvolo. Autonomous cross-domain knowledge
transfer in lifelong policy gradient reinforcement learning. 2015a.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Unsupervised cross-domain transfer in
policy gradient reinforcement learning via manifold alignment. 2015b.

Christopher G. Atkeson and Juan Carlos Santamaría. A comparison of direct and model-based reinforcement
learning. In Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque,
New Mexico, USA, April 20-25, 1997, pages 3557–3564, 1997.

Christopher G Atkeson et al. Using local trajectory optimizers to speed up global optimization in dynamic
programming.

David Baraff. Fast contact force computation for nonpenetrating rigid bodies. In Proceedings of the 21st
annual conference on Computer graphics and interactive techniques, pages 23–34. ACM, 1994.

David Baraff. An introduction to physically based modeling: rigid body simulation i—unconstrained rigid
body dynamics. 1997.

Samuel Barrett, Matthew E. Taylor, and Peter Stone. Transfer learning for reinforcement learning on a
physical robot. In Int. Conf. on Autonomous Agents and Multiagent Systems - Adaptive Learning Agents
Workshop (AAMAS-ALA), 2010.

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intel-
ligence Research, pages 319–350, 2001.

Dimitri P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific Belmont, MA,
1995.

Botond Bocsi, Lehel Csató, and Jochen Peters. Alignment-based transfer learning for robot models. In Neural
Networks (IJCNN), The 2013 International Joint Conference on, pages 1–7. IEEE, 2013.

James Cameron and Gale Anne Hurd. The terminator, 1984.

Andrea Censi. Bootstrapping Vehicles: A formal approach to unsupervised sensorimotor learning based on
invariance. Technical report, California Institute of Technology, 2012. URL http://purl.org/censi/
2012/phd.

Andrea Censi. Design Patterns for Learners Parallelization, or: the joy of waking up in the morning and
finding the experiments all done. Technical report, Laboratory for Information and Decision Systems/MIT,
October 2014. URL http://purl.org/censi/2015/despl.

Mark Cutler and Jonathan P. How. Efficient reinforcement learning for robots using informative simulated
priors. In IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, May 2015. IEEE.

22

http://purl.org/censi/2012/phd
http://purl.org/censi/2012/phd
http://purl.org/censi/2015/despl

Mark Cutler, Thomas J. Walsh, and Jonathan P. How. Reinforcement learning with multi-fidelity simulators.
In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2014.

Marc P. Deisenroth and Carl E. Rasmussen. PILCO: A model-based and data-efficient approach to policy
search. In Proc. of the Int. Conf. on Machine Learning (ICML), 2011.

Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato. Multiple model-based reinforcement
learning. Neural computation, 14(6):1347–1369, 2002.

Evan Drumwright. Rapidly computable viscous friction and no-slip rigid contact models. arXiv preprint
arXiv:1504.00719, 2015.

Evan Drumwright, Dylan Shell, et al. Extensive analysis of linear complementarity problem (lcp) solver
performance on randomly generated rigid body contact problems. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages 5034–5039. IEEE, 2012.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite-horizon model predictive control for periodic tasks
with contacts. Robotics: Science and Systems VII, page 73, 2012.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov decision
processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.

Juan Camilo Gamboa-Higuera, Anqi Xu, Florian Shkurti, and Gregory Dudek. Socially-driven collective path
planning for robot missions. In in Proceedings of the 9th Canadian Conference on Computer and Robot Vision
(CRV ’12), Toronto, Canada, May 2012.

C. Georgiades. Simulation and control of an underwater hexapod robot. Master’s thesis, McGill University,
2005.

Sehoon Ha and Katsu Yamane. Reducing Hardware Experiments for Model Learning and Policy Optimization.
IEEE International Conference on Robotics and Automation, 2015.

Adrian M Haith and John W Krakauer. Theoretical models of motor control and motor learning. Routledge
Handbook of Motor Control and Motor Learning, page 7, 2013.

D.H. Jacobson and D.Q. Mayne. Differential dynamic programming. Modern analytic and computational
methods in science and mathematics. American Elsevier Pub. Co., 1970.

Ben Kehoe, Akihiro Matsukawa, Sal Candido, James Kuffner, and Ken Goldberg. Cloud-based robot grasping
with the google object recognition engine. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 4263–4270. IEEE, 2013.

Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Goldberg. A survey of research on cloud robotics and
automation. Automation Science and Engineering, IEEE Transactions on, 12(2):398–409, 2015.

Jens Kober and Jan Peters. Reinforcement learning in robotics: A survey. In Reinforcement Learning, pages
579–610. Springer, 2012.

N. Koenig and A Howard. Design and use paradigms for gazebo, an open-source multi-robot simulator. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), volume 3, 2004.

George Konidaris and Finale Doshi-Velez. Hidden parameter markov decision processes: An emerging
paradigm for modeling families of related tasks. 2014.

Benjamin J Kuipers, Patrick Beeson, Joseph Modayil, and Jefferson Provost. Bootstrap learning of founda-
tional representations. Connection Science, 18(2):145–158, 2006.

Matthieu Lapeyre, Steve N’Guyen, Alexandre Le Falher, and Pierre-Yves Oudeyer. Rapid morphological ex-
ploration with the poppy humanoid platform. In IEEE-RAS International Conference on Humanoid Robots,
page 8, 2014.

23

Steven M LaValle and James J Kuffner. Randomized kinodynamic planning. The International Journal of
Robotics Research, 20(5):378–400, 2001.

Suchan Lee, Jason Yosinski, Kyrre Glette, Hod Lipson, and Jeff Clune. Evolving gaits for physical robots with
the hyperneat generative encoding: The benefits of simulation. Springer, 2013.

Sergey Levine and Vladlen Koltun. Guided policy search. In Proceedings of The 30th International Conference
on Machine Learning, pages 1–9, 2013.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor
policies. arXiv preprint arXiv:1504.00702, 2015a.

Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich manipulation skills with guided
policy search. arXiv preprint arXiv:1501.05611, 2015b.

Lihong Li, Michael L Littman, Thomas J Walsh, and Alexander L Strehl. Knows what it knows: a framework
for self-aware learning. Machine learning, 82(3):399–443, 2011.

Lennart Ljung. System identification. Springer, 1998.

Sara Lohmann, Jason Yosinski, Eric Gold, Jeff Clune, Jeremy Blum, and Hod Lipson. Aracna: An open-source
quadruped platform for evolutionary robotics. In Artificial Life, volume 13, pages 387–392, 2012.

David Meger, Juan Camilo Gamboa Higuera, Anqi Xu, Philippe Giguère, , and Gregory Dudek. Learning
legged swimming gaits from experience. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
2015.

Teodor Mihai Moldovan, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. Optimism-driven exploration
for nonlinear systems. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2015.

Andrew Y Ng. Shaping and policy search in reinforcement learning. PhD thesis, University of California,
Berkeley, 2003.

Duy Nguyen-Tuong and Jan Peters. Using model knowledge for learning inverse dynamics. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on, pages 2677–2682. IEEE, 2010.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans. on Knowledge and Data Engi-
neering, 2010.

Yunpeng Pan and Evangelos Theodorou. Probabilistic differential dynamic programming. In Advances in
Neural Information Processing Systems, 2014.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. 2008.

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. Proceedings of the European Conference
on Machine Learning (ECML), 2005.

Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy policy search. Proceedings of the Twenty-
fourth National Conference on Artificial Intelligence (AAAI), Physically Grounded AI Track, 2010.

Ali Punjani and Pieter Abbeel. Deep learning helicopter dynamics models. In IEEE International Conference
on Robotics and Automation (ICRA), Seattle, WA, May 2015. IEEE.

Morgan Quigley, Josh Faust, Tully Foote, and Jeremy Leibs. Ros: an open-source robot operating system.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced lectures on machine learning,
pages 63–71. Springer, 2004.

Stephane Ross and J Andrew Bagnell. Agnostic system identification for model-based reinforcement learning.
arXiv preprint arXiv:1203.1007, 2012.

24

Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. arXiv preprint arXiv:1011.0686, 2010.

Junaed Sattar, Gregory Dudek, Olivia Chiu, Ioannis Rekleitis, Philippe Giguère, Alec Mills, Nicolas Plamon-
don, Chris Prahacs, Yogesh Girdhar, Meyer Nahon, and John-Paul Lobos. Enabling autonomous capabilities
in underwater robotics. In Proc. of the IEEE/RSJ Int. Conf. on Int. Robots and Systems (IROS), 2008.

S. Schaal and C.G. Atkeson. Learning control in robotics. Robotics Automation Magazine, IEEE, 2010a.

Stefan Schaal. Dynamic movement primitives-a framework for motor control in humans and humanoid
robotics. In Adaptive Motion of Animals and Machines. Springer, 2006.

Stefan Schaal and Christopher G Atkeson. Learning control in robotics. Robotics & Automation Magazine,
IEEE, 17(2):20–29, 2010b.

Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. Realistic biomechanical simulation
and control of human swimming. ACM Transactions on Graphics (TOG), 2014.

Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, pages 15–22. ACM, 1994.

Seungmoon Song, Joohyung Kim, and Katsu Yamane. Development of a bipedal robot that walks like an
animation character. 2015.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. 1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy gradient methods for
reinforcement learning with function approximation. Citeseer, 1999a.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1):181–211, 1999b.

Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. Articulated swimming creatures. In ACM SIGGRAPH 2011
papers, SIGGRAPH ’11. ACM, 2011.

Yuval Tassa. Theory and Implementation of Biomimetic Motor Controllers. PhD thesis, 2011.

Matthew E Taylor and Peter Stone. Cross-domain transfer for reinforcement learning. In Proceedings of the
24th international conference on Machine learning, pages 879–886. ACM, 2007.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. The
Journal of Machine Learning Research, 2009.

Demetri Terzopoulos, Xiaoyuan Tu, and Radek Grzeszczuk. Artificial fishes: Autonomous locomotion, per-
ception, behavior, and learning in a simulated physical world. Artificial Life, 1(4), 1994.

Emanuel Todorov and Michael I Jordan. Optimal feedback control as a theory of motor coordination. Nature
neuroscience, 5(11):1226–1235, 2002.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In In-
telligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 5026–5033. IEEE,
2012.

M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez, K. Haussermann, R. Janssen, J.M.M.
Montiel, A. Perzylo, B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft. Roboearth. Robotics
Automation Magazine, IEEE, 18(2):69–82, 2011.

Chang Wang and Sridhar Mahadevan. Manifold alignment without correspondence. In Proceedings of the
21st International Jont Conference on Artifical Intelligence, IJCAI’09, San Francisco, CA, USA, 2009.

25

Steffen Weissmann and Ulrich Pinkall. Underwater rigid body dynamics. ACM Trans. Graph., 2012.

Haoran Xie and Kazunori Miyata. Real-time simulation of lightweight rigid bodies. Vis. Comput., 2014.

26

	Introduction
	Related work
	Proposal Topic I: A Robotic System that Learns from Simulators
	Fast and Plausible Physically Based Models
	Improving Inaccurate Models
	Policy Transfer
	Evaluating and Selecting Source Models

	Proposal Topic II: A Robotic System the Learns from Multiple Robot Morphologies
	Finding similarities and mappings between robotics systems
	A cloud architecture for learning controllers across robotic morphologies

	Proposed research plan
	Progress to date
	Proposed Milestones

	Conclusion

