
Vision-Based Autonomous Underwater Swimming in Dense Coral for
Combined Collision Avoidance and Target Selection

Travis Manderson, Juan Camilo Gamboa Higuera, Ran Cheng, Gregory Dudek

Abstract— We address the problem of learning vision-based,
collision-avoiding, and target-selecting controllers in 3D, specifi-
cally in underwater environments densely populated with coral
reefs. Using a highly maneuverable, dynamic, six-legged (or
flippered) vehicle to swim underwater, we exploit real time
visual feedback to make close-range navigation decisions that
would be hard to achieve with other sensors. Our approach
uses computer vision as the sole mechanism for both collision
avoidance and visual target selection. In particular, we seek
to swim close to the reef to make observations while avoiding
both collisions and barren, coral-deprived regions. To carry
out path selection while avoiding collisions, we use monocular
image data processed in real time. The proposed system uses
a convolutional neural network that takes an image from a
forward-facing camera as input and predicts unscaled and
relative path changes. The network is trained to encode our
desired obstacle-avoidance and reef-exploration objectives via
supervised learning from human-labeled data. The predictions
from the network are transformed into absolute path changes
via a combination of a temporally-smoothed proportional con-
troller for heading targets and a low-level motor controller. This
system enables safe and autonomous coral reef navigation in
underwater environments.

We validate our approach using an untethered and fully
autonomous robot swimming through coral reef in the open
ocean. Our robot successfully traverses 1000 m of the ocean
floor collision-free while collecting close-up footage of coral
reefs.

I. INTRODUCTION

In this paper, we present and validate an integrated system
for vision-based navigation combined with collision avoid-
ance and visual target detection and selection. Specifically,
our system relies solely on computer vision to select a
navigational path that maximizes the value of its visual
view while simultaneously avoiding collisions in a highly
cluttered environment that is also visually challenging. Such
visual challenges include optical artifacts such as floating
particulate matter, reflective effects, and (optical) caustics.
Furthermore, maintaining system control is complicated by
exogenous forces acting on the vehicle, such as surge cur-
rents. We develop and test our navigational system in an
underwater environment where the objective is to perform
close-range coral reef monitoring, classification, and obser-
vation (see Figure 1). Our technique, however, is well suited
for a wider range of applications.

Underwater environments have large variations in appear-
ance, visibility and floating particulate matter which makes
our objective of navigating safely while performing close

Mobile Robotics Laboratory, School of Computer Science, McGill Uni-
versity, Montreal, Canada
{travism,gamboa,rancheng,dudek}@cim.mcgill.ca

BAD

GOOD

Fig. 1. Example of the underwater environment with two possible navi-
gation paths. The desirable path is shown in green (right). The undesirable
path is shown in red (left). A demonstration video can be found at https:
//youtu.be/jjkP0SYiF7M

observations of structures labeled as interesting to a human
domain expert, difficult. Thus, we use a learning-based
approach to vision-based navigation. We first collect open-
loop image data from swim-throughs by a human domain
expert to generate ’good’ and ’bad’ navigation scenarios.
The images from these scenarios are then manually annotated
off-line and used to train the appearance-based controller we
employ. We also employ state-of-the-art vision-based SLAM
methods to post-process our image data and reconstruct the
trajectories.

In our experiments, we use a hexapod underwater robot
that autonomously swims over coral reefs in the open ocean.
This robot is highly maneuverable with a turning radius of
roughly 7 cm, which allows us to maintain a distance of
roughly 10-50 cm between the robot and the reef structures.
As a result, this underwater navigation task more closely
resembles a typical drone-flying task in terms of control
demands and operational parameters than the standard navi-
gation task for underwater vehicles. To our knowledge, this
close-approach navigation in six degrees of freedom (6DoF)
is the first instance of vision-based underwater navigation
with such meticulous performance requirements.

Vision-based odometry (VO) in 6DoF has been considered
by many authors [1], [2], [3], [4], [5], [6]. In this work,
our emphasis is not on VO per se, but on safe close-
range navigation combined with surveillance of desirable
content. However, many of the constraints from VO still
apply, including the need to account for observing useful
content. On the other hand, some objectives of our navigation
task go beyond the capabilities of traditional VO methods,
including control feedback for navigation and assurance of
collision avoidance. In addition, we need to compute a
6DoF navigation solution in the absence of GPS or range

https://youtu.be/jjkP0SYiF7M
https://youtu.be/jjkP0SYiF7M


data and in the presence of non-rigid structures, floating
particular matter, and lighting variations due to caustics
(refraction through the water surface) or exogenous forces
such as currents. These requirements invalidate some of the
assumptions of classical methods based on a combination
of visual features and inertial input, making them difficult
to apply. Note that in underwater environments, GPS is
essentially impossible while other sensing mechanisms such
as sonar tend to be relatively bulky and slow relative to the
close-range scale of the operation in which we are interested.

II. RELATED WORK

Behavioural cloning is one of the earliest techniques used
for training a vision-based controller from human-provided
examples. Pomerleau [7] trained a feedforward neural net-
work controller to predict the angle of the steering wheel
for driving a van. The network was trained using supervised
learning based on data collected in simulation. A similar
setup has been replicated for training deep convolutional
neural network controllers for self-driving cars using non-
simulated data collected while driving a real vehicle [8].

Recent related methods for aerial vehicles have a similar
setup but differ in the way data is collected. Loquercio et.
al [9] used a dataset collected by bicycles and cars for
autonomous flying in urban environments. Giusti et. al. [10]
used a dataset collected with head-mounted cameras to train a
controller that predicted steering angles for an aerial vehicle.
A similar data collection system was used by Smolyanskiy
et. al [11] to also train a controller for the lateral offset of
an aerial vehicle. Our work is closely related to [11] in that
we use a similar controller architecture, but differs in the
data collection setup, how the system is trained, and the
deployment environment.

A related method that does not rely on training a deep
neural network controller is the visual ’teach-and-repeat’
framework by Furgale et. al [12]. In this framework, an
autonomous vehicle is driven through a desired path while
collecting images along the way. These images are used to
build a locally consistent map of the environment and a
reference path to be tracked. Using this map, an autonomous
rover can determine how far it is from the reference path and
use this information as an error signal for a path-tracking
controller.

The experiments we describe in this paper also bear close
resemblance to the DAGGER algorithm [13]. DAGGER
proceeds by training a controller from an initial set of
expert demonstrations. This controller is applied on the target
system, possibly leading the system to states that were not
observed in the initial demonstrations. To continue, an expert
must label the new states that were visited, thus providing
the actions that he or she would have taken in these novel
situations. The new labeled data is then added to the initial
dataset to train a new controller. This procedure is repeated
iteratively until the controller achieves satisfactory perfor-
mance. In this study, we trained our controller in a similar
fashion, repeatedly deploying the controller and labeling new
data as it was generated. However, our expert demonstrations

Core i3 

NUC

500MHz 

PC104

Jetson

TX2

Back

Camera

Front Right

Camera

Front Left

Camera

Motor

Motor

Motor

Motor

Motor Motor

X / North
Y / West

Z / Up

Fig. 2. Aqua robot (left) shown with a system block diagram of the motors,
cameras, and three computer components (right).

came from multiple experts with slightly different ideas of
how the robot should act in novel situations. Furthermore, the
labels we obtained did not correspond directly to the desired
actual actions taken by the robot; rather, they represented the
desired relative change in the path of the robot.

Recent work by Shkurti et. al. [14] used a neural network
controller to control the same underwater vehicle used in this
work. Their controller consisted of a single class object de-
tector trained to detect divers or other underwater robots and
a linear controller for keeping the detected bounding boxes
centered around the optical axis of the camera. In such an
application, the task is defined by the controller architecture
and does not provide obstacle avoidance. Such a method
may be combined with ours for safe multi-robot/multi-diver
convoying.

III. SYSTEM OVERVIEW

AQUA robots are a small, human-portable, six degrees-
of-freedom hexapods with six flippers, as shown in Figure 2
[15], [16]. These robots are capable of complex trajectories
in confined underwater spaces, including dense coral reef.
Sensors on the robot include an Inertial Measurement Unit
(IMU), depth sensor, and three IDS Imaging UI-3251LE
global-shutter cameras with 4 mm lenses (the effective field
of view underwater is 107◦ horizontal and 91◦ vertical), two
forward-looking cameras at the front and one at the back
(configured to look down using a mirror). Onboard com-
putation includes: 1) a 500 MHz PC104 computer running
a real-time operating system dedicated to low-level motor
control and autopilot systems [16]; 2) an Intel NUC with
an i3 processor used to capture camera images, do image
processing, and run high-level control algorithms; and 3) a
Jetson TX2 Module used to run neural networks. All three

Jetson TX2NUC

PC104

DNN InferenceROS

Autopilot

Proportional

Controller

Front Left

Camera

MotorsIMU

Depth Sensor

Fig. 3. Flowchart showing the main sensors, computers and motors inside
AQUA, along with the connections of the main components of our system.



computers communicate over TCP using gigabit Ethernet.
A flowchart of our autonomous system is shown in Figure

3, which begins with the forward-looking camera where
images are captured and processed by the NUC computer
using custom Robot Operating System (ROS) nodes. The
images are sent to the Jetson TX2 using ROS messages,
which also has the ROS services installed, where they are
processed by our neural network model as described in
section V. The model predicts relative steering angles in the
form of changes to the yaw and pitch. These predictions are
used by a proportional controller that weighs the predictions
and performs temporal filtering (as described in section VI)
to output actions in the form of target yaw and pitch angles
expressed in world-frame. The actions are relayed to the
autopilot, which orientates the robot to the target yaw and
pitch angles.

IV. DATA COLLECTION
Our dataset consisted of 12,870 labeled images collected

on the west coast of Barbados. We collected video footage
by treating the robot as a hand-held camera and recording
several desirable sequences of coral. We also recorded unde-
sirable sequences such as approaches to coral closer than we
wanted the robot to swim or footage of the sandy sea-floor
or the water surface. From these video sequences, we saved
individual frames that were then hand-labeled to indicate the
desired change in the path of the robot.

Our labeling tool worked by displaying a single image
frame to the labeler (a human) as shown in Figure 4 who
used the arrow keys to label each image with a desired
change in the yaw and pitch angles that one would expect the
robot to swim. Although this labeling task may be viewed
as subjective, we generally applied the following guidelines
to promote consistency between the labelers:

1) Avoid obstacles and ensure the maximum change in
yaw and/or pitch when extremely close.

2) Explore interesting coral.
3) Avoid sandy and plain regions.
4) Steer away from the water surface.
5) Steer away from the sea floor.
To augment the size of the training set and add variation

in our dataset, we applied image mirroring (and changed the
corresponding labels), randomly added noise, and changed
the luminosity to account for change in lighting conditions.

V. MODEL OVERVIEW
The vision-based controller used in our experiments is

based on a convolutional neural network (CNN) trained to

Fig. 4. Two examples of our Graphical User Interface labeling tool.

convolution dropout ReLU max pooling average pooling

conv1 conv2_x conv3_x conv4_x conv5_x

Pitch

-3
-2
-1
0
1
2
3

Yaw

-3
-2
-1
0
1
2
3

Fig. 5. An overview of the neural network architecture used for the steering
action classifier. It takes as input, an image from the robot’s camera and
predicts relative yaw and pitch steering angles.

predict steering actions for the robot for a given input image.
These actions represent the desired degree of change in the
orientation of the robot (yaw and pitch) while swimming
at a constant forward speed in the water. We based our
architecture (as illustrated in Figure 5) on the Resnet-18
architecture [17], which has been used successfully for
similar visual navigation tasks [11].

We treated the task of learning the controller from data
as a classification task. The goal was to predict yaw and
pitch classes θ and φ; where both were elements of the
set, C={−3,−2,−1, 0, 1, 2, 3}. These classes represented
an unscaled desired degree of change in the angle, with
positive/negative labels denoting a change in the anti-
clockwise/clockwise direction. For example, θ = 0 corre-
sponded to no change in yaw, θ = −1 corresponded to
turning slightly to the right, and θ = 3 corresponded to
a large turn to the left. The meaning of these predictions
in absolute terms was a function of the mental state of the
individuals labeling the data and the scaling factor introduced
in the controller that used the network predictions. We
chose seven as the number of yaw and pitch classes to
provide consistent labels, which has been commonly shown
in psychology literature [18].

Since our datasets were relatively small for the number
of parameters (∼13 000 labeled samples for 10 million
parameters), we opted to regularize our model via approxi-
mate Bayesian variational inference. We introduced dropout
layers [19] after every convolutional layer in the network and
changed the objective function to correspond with approxi-
mate variational inference, as described in [20]. In particular,
we used the Concrete Dropout approximation [21], as it
allowed for fitting the dropout rates for each convolutional
layer in a data dependent manner. We also added a penalty
term for predictions that were overconfident and performed
label smoothing, as it is suggested in [11].

More specifically, we started with a neural network f with
parameters w, which produced two predictive categorical
probability distributions, f (θ) and f (φ), for the yaw and
pitch steering actions. We were given a dataset D consisting
of tuples of input images and one-hot encoded labels1

〈(x1, θ1, φ1), ..., (xN , θN , φN )〉. In this scenario, the cost

1A vector of size equal to the number of classes, where the position
indexed by the corresponding class label is set to one while the other entries
are set to zero.



function for training was the following:

L (D,w) = Lpred (D,w) + λ1Lreg (D,w)

Lpred =
∑

(xi,θi,φi)∈D

l(f
(θ)
i , θi,w) + l(f

(φ)
i , φi,w)

where the regularization term corresponds to the KL-
divergence term in [21]. The prediction loss for yaw steering
actions was given by

l(f
(θ)
i , θi,w) = −

∑
j

θij log f
(θ)
ij − λ2

∑
j

f
(θ)
ij log f

(θ)
ij

where first term corresponds to the cross-entropy between the
network predictions and the smoothed labels, and the second
term is the penalty for overconfident predictions, which aims
to maximize the entropy of the predictive distributions. The
loss for the pitch steering actions was similar. The hyper-
parameters λ1 and λ2 determined the weights of the KL-
divergence regularization and the entropy penalty and were
selected manually.

We kept dropout enabled at test time and applied temporal
smoothing to the output predictions. By keeping dropout
enabled, we aimed to avoid making decisions on predictions
that were too uncertain. When dropout was disabled, we
obtained the expected prediction averaged over the posterior
distribution of the parameters w. With dropout enabled, we
obtained predictions from samples of the posterior distri-
bution. When the model received images that were signif-
icantly different from the ones observed during training,
we expected the distribution over predictions to have high
variance (corresponding to high modeling uncertainty). By
using samples from this distribution over predictions, we
let modeling uncertainty affect the behaviour of the robot.
We did temporal smoothing to avoid sudden changes on the
motor commands applied to the robot.

VI. CONTROLLER

Our controller was responsible for converting the model’s
predictive distributions to target yaw and pitch angles, yθ and
yφ. This conversion was done after temporal smoothing by
selecting the class with the maximum probability after adding
a bias weight to the class associated with the previous action
taken. Our predicted action class for yaw was then given by:

ŷ(θ) = argmax
k∈0...6

(f (θ) + wbŶ
(θ)
t−1)[k]

where k is the class index, wb the bias weight, and Ŷ (θ)
t−1 is

the one-hot encoded class of the previous action.
Since ŷ(θ) is an unscaled representation of the desired

change in yaw angle, we converted ŷ(θ) to the scaled yaw
angle action (given in the robot body-frame) by multiplying it
by one-sixth of the camera’s horizontal field of view (FOVH )
and proportional gain, P (θ):

y(θ) = P (θ)Ŷ (θ) FOVH

6

The same process was done for the pitch y(φ) using the
vertical field of view. We sent the target pose to the autopilot

Fig. 6. An example image of the environment where the experiments took
place. The poor-quality image exhibits low light, absence of color variation,
and high turbidity.

in world-frame coordinates, so yθ and yφ were converted to
world-frame by the transformation WTR

RTC , where WTR
was the transformation from the robot body-frame (initialized
to the IMU state when an experiment started) and RTC was
the transformation from the camera coordinate system to the
robot body-frame, which we estimated using the camera-
IMU calibration tool, Kalibr [22].

VII. EXPERIMENTAL VALIDATION
The field experiments described in this paper were per-

formed on the west coast of Barbados (approximately
13◦11’30.00” N, 59◦38’30.00” W). Our data collection was
done on three separate days in different regions of a coral
reef. The validation trials were performed on two addi-
tional days. Figure 6 shows an example image where the
experiments took place. As described in IV, we collected
training data of similar environments where the validation
experiments took place, but not in the exact same locations to
avoid overfitting. Since the training data was collected over a
number of days, we were able to capture multiple underwater
conditions in terms of lighting and turbidity, which vary with
the weather.

Our CNN was initialized using the weights provided by
[11], and training our CNN took five hours for 10 000
iterations on an NVidia Titan Xp. The hyperparameters of our
network are shown in Table I. Our network is implemented
using TensorFlow, and on the Jetson TX2, we processed the
images in real-time at 10 Hz. Although the accuracy reported
during training was only 41%, this result is for seven classes,
unlike [9] which reported the accuracy on a binomial class,
and [11] which was for three classes. Furthermore, when
attempting to avoid obstacles, it is possible that ambiguity
may exist in which direction to go. However, this ambiguity
is handled by our temporal smoothing.

A. Parameter Tuning

Prior to validating the performance of our model, we
manually tuned the control parameters, wb, P (θ) in two
stages. The first stage used informal heuristics on dry land,

Learning Rate Batch Size λ1 λ2 Label Smoothing

0.0001 128 0.00001 0.1 0.1

TABLE I
CONVOLUTIONAL NEURAL NETWORK HYPER PARAMETERS.



Trial Time Distance
Travelled

Percentage of Path
Containing Coral

Average
Distance to

(m:s) >10% 25% Obstacles

1 6:30 150 m 95.53% 75.14% 0.55 m

2 6:30 160 m 97.16% 81.20% 0.48 m

3 7:52 220 m 100.00% 88.45% 0.34 m

4 11:10 270 m 92.61% 67.07% 0.46 m

5 7:53 280 m 99.90% 84.32% 0.37 m

TABLE II
TIME, DISTANCE, AND STATISTICS OF CORAL COVERAGE AND

OBSTACLES FOR OUR EXPERIMENTAL TRIALS.

followed by refinement passes in the ocean. We tuned P (φ)

by performing three tuning trials in the open sea where the
robot was allowed to operate until an overly-close approach
to an obstacle was observed by a supervising human diver (at
which point we physically intervened to stop the robot). At
such a point, the gain was modified. We repeated this process
for approximately 20 minutes for each trial. Initially (and
for the first tuning trial), wb was set to zero and the initial
parameters for P (θ) and P (φ) were based on our previous
work on robot tracking [14] and chosen to be 0.5. Without
any bias term wb, the robot oscillated, particularly in the
yaw axis, and in a couple instances would have collided
with coral. This result can be attributed to ambiguity when
avoiding obstacles. In some instances, such as an obstacle
directly in front of the robot, either a left or right turn is
equally acceptable, which can lead to unstable behavior if
only instantaneous decisions are used. In such situations,
temporal stabilization is needed and the wb introduces hys-
teresis, thus biasing the decision to continue the maneuver
that was chosen during the previous time window.

Other tuning actions were needed to assure that the robot
would be able to pitch up sufficiently rapidly to avoid a
forward obstacle by moving vertically. Likewise, ocean surge
currents (back and forth currents) vary rapidly over the reef
and can be particularly strong between pairs of obstructions
(which is the same phenomenon that leads to “rip tides”
that are a risk to human swimmers). In order to account
for observed difficulties due to surge (especially in rough
sea conditions), some parameters were also used to increase
maximum swimming speed and responsiveness. The upshot
is that local variations in sea conditions imply tradeoffs
between responsiveness, safety, battery life, and data quality.

B. Model Evaluation

In a series of evaluation trials in the open ocean, the
robot was able to swim continuously, avoid collisions, and
successfully collect the desired image data. However, in
two instances, the combination of rough seas, very close
approach to the coral, and sudden changes in current pro-
voked an intervention by the supervising divers. Whether
these interventions were actually required is impossible to
determine. To completely avoid the potential of collision,
the operating distance would need to be increased or sea
conditions selected to reduce surge currents. We estimate
that over the course of the five trials, the robot swam a total

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Fig. 7. Planar projections of estimated paths executed during five trials of
our experiments (each in a different color). An aerial view of the reef is used
as a background to show underlying coral structures and was not available
in acceptable quality for the right edge of the region being displayed.

distance of more than one km navigating through dense coral
in the open sea. The trial times and distances are tabulated
in Table II.

The robustness of our approach is validated by the time
and distance that the robot swam without collision. However,
to further evaluate the model’s ability to navigate the robot
through dense coral and compare it to future work, we
post-processed the data using three different techniques to
gain several performance metrics. First, we ran a modified
version of the Direct Sparse Odometry (DSO) algorithm [6]
to estimate the trajectory the robot executed. Second, we
performed stereo matching between the left and right front
cameras based on Oriented FAST and Rotated BRIEF (ORB)
feature matching (our implementation is similar to that
described in [5]) to evaluate the distance to the nearest
potential obstacle in front of the robot. Third, we measured
the fraction of each image that was coral using automated
image analyses described in our previous work [23].

1) Trajectory Estimation: The robot’s trajectory for each
trial was measured using recorded video from the back
downward-looking camera. Due to the low-texture in sandy
regions of the sea floor, DSO is unable to track the point Hes-
sians2 and comopfute the re-projection error. To overcome
this inability, we re-sampled and normalized the distribution
of point Hessians. To account for the scale invariant nature of
monocular visual odometry, we manually adjusted the scale
to correspond with the observed distance to the sea floor.

The computed trajectories for each trial are shown in
Figure 7 overlayed on an image taken from the sky. The
alignment of the paths is done by our best estimate. The top
image in Figure 8 shows the path and reconstruction of the
environment for the second trial and bottom image shows an
example of the robot’s path avoiding an obstacle.

2) Depth Estimation: For each stereo pair of images that
we recorded from the front and left cameras, we performed
depth estimation to nearby objects by robustly matching

2See page six of [6] for a definition of the Hessian.



Fig. 8. Sample trajectory of trial two produced using DSO. The bottom
image is a closeup view as the robot avoids an obstacle.

ORB features between images and triangulating their po-
sition. From these features, we measured the approximate
distance to potential obstacles in the robot’s path. Note that
this approach only measured objects directly in front of the
robot due to the narrow FOV (107◦ x 91◦). There are many
times when the robot passed less than 10 cm from objects
that were either beside or below the robot. Figure 9 shows
the distance to the closest objects for each trial. We observed
that on average, the robot maintained a distance of 43 cm
from coral. There were also very few instances where the
distance to coral was further than 200 cm. It is expected
that in some instances, due to the nature of the environment,
there may be no alternative but to head in the direction of
distant coral.

We also calculated the mean position of nearby obstacles
by averaging the position of each of the ORB features
weighted by their inverse distance. Figure 10 shows a sample
of the first trial with the obstacle’s average (horizontal)
position along with the yaw action (where the yaw has been

Fig. 9. The coral coverage per frame and distance to nearest objects per
experiment. On average, the robot maintained 30% of the image as coral
and swam 43 cm from the nearest coral.

Fig. 10. A sample showing the correlation between the coral and obstacle
position versus the yaw action. Note that the yaw has been inverted for
clarity.

inverted and both the yaw and average position have been
normalized to increase readability). It can be seen that there
is a correlation: when an obstacle is on one side of the image,
the robot steers in the other. We observed this motion in very
confined spaces - however, nearby objects are not the only
factors in the yaw control.

C. Coral Coverage

To measure the effectiveness of navigating coral regions
as opposed to dull or sandy regions of the environment, we
ran an automated coral classifier [23] on every image in our
trials and recorded the percentage of the image classified as
coral (see Figure 11). Since the robot spent most of its time
navigating over coral while swimming flat, it is reasonable to
expect at most half of the pixels in each image correspond
to coral (the bottom of the image), unless the robot gets
too close to an obstacle. Figure 9 shows the percentage of
the image classified as coral at each frame, for each trial.
On average, the robot swam while maintaining ∼ 30% of
the image as coral. Table II summarizes the path coverage
of coral for two thresholds, 10% and 25%. With a 10%
threshold, the robot kept corals in view ∼ 95% of the time.
With a 25% threshold, the coral coverage drops to as low as
67% for trial four, and as high as 88% for trial three.

To estimate the impact of the algorithm’s effort to retain
coral in the robot’s view, we compared the amount of
coral visible on the paths in Fig. 7 to trajectories that did
not use visual feedback to enhance coral contact. To do
this comparison, we generated several synthetic straight-line
trajectories in the same regions of the reef and measured the
fraction of frames in which coral was visible. These synthetic
trajectories yielded an average coral visibility between 40%
and 76% with a mean of 67%. These figures are substantially
worse than those observed by the robot, which were between
95% and 100%.



Fig. 11. Sample image with regions classified as coral shown with red
overlay (note that the classification is imperfect). In this image, less than
50% of the image is coral and some rock has been misclassified as coral.

VIII. CONCLUSIONS

In this paper, we have described an approach to real-
time vision-based robot navigation that combines collision
avoidance, proximity-maintenance, and maximization of use-
ful visual content. Unlike traditional (and impressive) meth-
ods for SLAM or visual odometry, our technique rapidly
accounts for obstacles that are positioned too close to the
vehicle’s direction of motion; selects steering actions to avoid
collisions; operates robustly in the presence of fish, soft
moving coral, and non-rigid structures; and avoids oscillatory
actions in the presence of ambiguous visual signals. Since
formalization of all these constraints, as well as lighting
variations and subjective preferences, is difficult to achieve,
we employed a learning-based approach to path selection and
demonstrated extensive collision-free navigation with good
data acquisition properties. Notably, the quality and nature of
the images we acquire make this a suitable controller for the
collection of frames that are suitable for vision-based SLAM.
In contrast, uncontrolled trajectories in the same regions
often include numerous sequential frames with insufficient
visual content for reliable long-term position estimation. We
apply vision based SLAM as a post-processing stage to
illustrate the trajectories that were executed.

To act consistently and decisively, we use temporal hys-
teresis in the controller. At present, we use a very short time
window, but the manner in which this parameter could be
modulated as a function of distance, speed, and uncertainty
is a topic for future investigation.

In future work, we are interested in combining our ap-
proach with SLAM-based mapping and task-driven path
planning to optimize data collection objectives. We hope
that this work will lead to improvements in environmental
modeling as well as pure robotics.

REFERENCES

[1] S. I. Roumeliotis, A. E. Johnson, and J. F. Montgomery, “Augmenting
inertial navigation with image-based motion estimation,” in Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, vol. 4. IEEE, 2002, pp. 4326–4333.

[2] A. J. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on. IEEE, 2003, pp. 1403–1410.

[3] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry for ground
vehicle applications,” Journal of Field Robotics, vol. 23, no. 1, pp.
3–20, 2006.

[4] D. G. Kottas, J. A. Hesch, S. L. Bowman, and S. I. Roumeliotis, “On
the consistency of vision-aided inertial navigation,” in Experimental
Robotics. Springer, 2013, pp. 303–317.

[5] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards, “Orb-slam: A
versatile and accurate monocular slam system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, Oct 2015.

[6] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Mar. 2018.

[7] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989,
pp. 305–313.

[8] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[9] A. Loquercio, A. I. Maqueda, C. R. del Blanco, and D. Scaramuzza,
“Dronet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1088–1095, April 2018.

[10] A. Giusti, J. Guzzi, D. C. Cirean, F. L. He, J. P. Rodrguez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza,
and L. M. Gambardella, “A machine learning approach to visual
perception of forest trails for mobile robots,” IEEE Robotics and
Automation Letters, vol. 1, no. 2, pp. 661–667, July 2016.

[11] N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward
low-flying autonomous mav trail navigation using deep neural net-
works for environmental awareness,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sept 2017, pp.
4241–4247.

[12] P. Furgale and T. D. Barfoot, “Visual teach and repeat for long-range
rover autonomy,” Journal of Field Robotics, 2010.

[13] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[14] F. Shkurti, W. Chang, P. Henderson, M. Islam, J. Gamboa Higuera,
J. Li, T. Manderson, A. Xu, G. Dudek, and J. Sattar, “Underwa-
ter multi-robot convoying using visual tracking by detection,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vancouver, Canada, September 2017, pp. 4189–4196.

[15] G. Dudek, M. Jenkin, C. Prahacs, A. Hogue, J. Sattar, P. Giguere,
A. German, H. Liu, S. Saunderson, A. Ripsman, S. Simhon, L. A.
Torres-Mendez, E. Milios, P. Zhang, and I. Rekleitis, “A visually
guided swimming robot,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Edmonton AB, Canada, Aug.
2005, pp. 1749–1754.

[16] P. Giguere, Y. Girdhar, and G. Dudek, “Wide-Speed Autopilot
System for a Swimming Hexapod Robot,” in Canadian Conference
on Computer and Robot Vision (CRV), 2013. [Online]. Available:
http://www.cim.mcgill.ca/∼yogesh/publications/crv2013.pdf

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[18] G. A. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information,” Psychological
Review, pp. 81–97, 1956.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[20] Y. Gal and Z. Ghahramani, “Bayesian convolutional neural networks
with Bernoulli approximate variational inference,” in 4th International
Conference on Learning Representations (ICLR) workshop track,
2016.

[21] Y. Gal, J. Hron, and A. Kendall, “Concrete Dropout,” in Advances in
Neural Information Processing Systems 30 (NIPS), 2017.

[22] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013.

[23] T. Manderson, J. Li, N. Dudek, D. Meger, and G. Dudek, “Robotic
coral reef health assessment using automated image analysis,” Journal
of Field Robotics, vol. 34, no. 1, pp. 170–187, 2017. [Online].
Available: http://dx.doi.org/10.1002/rob.21698

http://www.cim.mcgill.ca/~yogesh/publications/crv2013.pdf
http://dx.doi.org/10.1002/rob.21698

	INTRODUCTION
	RELATED WORK
	System Overview
	DATA COLLECTION
	MODEL OVERVIEW
	CONTROLLER
	EXPERIMENTAL VALIDATION
	Parameter Tuning
	Model Evaluation
	Trajectory Estimation
	Depth Estimation

	Coral Coverage

	CONCLUSIONS
	References

