
Synthesizing Neural Network Controllers with
Probabilistic Model-Based Reinforcement Learning

Juan Camilo Gamboa Higuera, David Meger and Gregory Dudek
School of Computer Science

Centre for Intelligent Machines
McGill University

{gamboa,dmeger,dudek}@cim.mcgill.ca

1 Introduction

Model-based reinforcement learning (RL) is an attractive framework for addressing the synthesis
of controllers for mobile robots, due to its promise of data-efficiency. By using experience data
(empirical data from real robotic systems) to fit state-transition dynamics models, an RL agent can
search for good controllers using these models to evaluate policies in simulation; minimizing costly
trials on the target robot platform. Minimizing interactions, however, means that experience datasets
won’t be large enough to obtain accurate dynamics models. Bayesian models are very helpful in
this situation. Instead of requiring an accurate model, the RL agent may keep track of a distribution
of dynamics models that are compatible with its experience. Evaluating a controller now involves
quantifying its performance over this distribution: a good controller should perform well on any
dynamics model drawn from the model distribution, to improve its chances of working in the real
world. Two successful applications of this idea are the PILCO and Deep-PILCO algorithms.

PILCO [1] uses Gaussian Process (GP) models to fit one-step dynamics and networks of radial basis
functions (RBFs) for feedback policies. PILCO has been shown to perform very well with little
data in benchmark simulated tasks and on real robots [1]. We have used PILCO successfully for
synthesizing swimming controllers for an underwater swimming robot [2]. However, PILCO is
computationally expensive. Model fitting scales cubically with dataset size and simulated rollouts
scale quadratically with state dimensionality, limiting its applicability to scenarios with small datasets
and a low number of dimensions. Deep-PILCO [3] aims to address these shortcomings by employing
Bayesian Neural Networks (BNN), implemented using binary dropout [4, 5]. Deep-PILCO uses
BNNs to fit a dynamics model, and performs a sampling-based procedure for simulation. This Policy
Search and model learning are done via stochastic gradient optimization: computations with linear
scaling in the dataset size and state dimensionality. Deep-PILCO has been shown to result in better
performing policies for the cart-pole swing-up benchmark task, but reduced data efficiency when
compared with PILCO on the same task.

In this work, we extend on the results of [3]. We demonstrate that Deep-PILCO can match the data
efficiency of PILCO on the cart-pole swing-up task with a small number of heuristics to stabilize
optimization. We demonstrate that using neural network controllers improves the data efficiency of
Deep-PILCO. We also show that using Log-Normal multiplicative noise [6] removes the need for
searching for the appropriate dropout rate, and outperforms the original version of Deep-PILCO with
binary dropout on the cart-double pendulum swing-up task.

2 Methods

We follow the problem definition in [1, 3]. We assume target systems that can be modeled with
an unknown discrete-time first-order dynamics equation xt+1 = f(xt,ut), where f is unknown,
xt ∈ RD is the state of the system and ut ∈ RU is the applied control, at time step t. The goal

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



is to find the parameters θ of a control policy πθ that minimize a state-dependent cost function c
accumulated over a given time horizon H ,

arg min
θ

J(θ) = Eτ

{
H∑
i=1

c(xt)

}
. (1)

The expectation is taken over the trajectory distribution p(τ) = p(x1,u1, ...,xH ,uH). In PILCO,
the expectation over trajectories is replaced by an expectation over individual state distributions
p(x1), ..., p(xH) which are modelled as Gaussian. Simulation consists of finding the parameters of
each p(xt), its mean and covariance, by analytical integration. The cost function is approximated
as J(θ) ≈

∑H
i=1 Ext

{c(xt)}. This is an approximation to p(τ) as a multivariate Gaussian with
block-diagonal covariance, assuming deterministic controllers.

Deep-PILCO uses the same approximation for the cost, but the state distributions p(xt) are obtained
empirically from simulated trajectories. We obtain K simulated trajectories from the following
model:

x
(k)
1 ∼ p(x1), f (k) ∼ p(f),

u
(k)
t ∼ πθ

(
u
(k)
t |x

(k)
t

)
, y

(k)
t+1 ∼ p(x

(k)
t+1|x

(k)
t ,u

(k)
t , f̂ (k)),

x
(k)
t+1 ∼ N(x

(k)
t+1|µ̂yt

, Σ̂yt
).

(2)

The sampling from the dynamics model distribution p(f) is approximated by sampling the weights
of a BNN fit to the experience data. The last step in Eq. 2 corresponds to sampling from the
moment-matched Gaussian distribution of the output of the dynamics.

2.1 Stabilizing the optimization procedure

2.1.1 Common random numbers (CRN) and PEGASUS policy evaluation

The convergence of Deep-PILCO is highly dependent on the variance of the estimated gradient
ˆ∇θJ(θ) = 1

K

∑K
k ∇θJ(θ|f̂ (k),x(k)

1 ). The variance of this gradient is, among other things, depen-
dent on p(x1), the random numbers used for Monte Carlo integration, and the number of particles K.
In our initial experiments we increased K from 10 to 100, and found it to improve convergence with
small penalty on running time.

Increasing the number of particles also enables us to further reduce variance by using common
random numbers (CRN). The generative model in Eq. 2, implemented with BNNs in Deep-PILCO,
relies on the reparametrization trick to propagate policy gradients over the simulation horizon. If we
provide the random numbers for the policy evaluation step of Deep-PILCO, we obtain a variant of
the PEGASUS algorithm [7], which requires intermediate moment-matching and resampling steps.

2.1.2 Gradient Clipping

As noted in [3], the recurrent application of BNNs to implement the generative model in Eq. 2 can be
interpreted as a Recurrent Neural Network (RNN) model. As such, Deep-PILCO is prone to suffer
from vanishing and exploding gradients [8], especially when dealing with tasks that require long
time horizon or very deep models for the dynamics and policy. Although numerous techniques have
been proposed in the RNN literature, we found the gradient clipping strategy to be effective in our
experiments; as shown in Figure 2b.

2.2 Training neural network controllers

While Deep-PILCO had been limited to training single-layer Radial Basis Function policies, the
application of gradient clipping and CRNs allows stable training of deep neural network policies,
opening the door for richer behaviors. We found that adding dropout regularization to the policy
networks improves performance. During policy evaluation, we sample from policies with a similar
scheme to that used for dynamics models. For each particle, we sample one dynamics model and one
policy, and keep them fixed during policy evaluation. This can be viewed as attempting to learn a

2



(a) Cartpole RBF Policies (b) Cartpole Deep Policies

Figure 1: Cost per trial on the cart-pole swing-up task. The shaded regions correspond to half a standard
deviation (for clarity). In (a), RBF policies are learned with various methods, as has been examined by prior
work. NN policies are learned in (b), which demonstrate that Deep-PILCO, with deterministic policy evaluations,
can match the data efficiency of PILCO in the cartpole task.

(a) Double CP Learning (b) Clipping comparison

Figure 2: (a) Cost per trial on the double cart-pole swing-up task. The shaded regions correspond to half a
standard deviation (for clarity). This demonstrates the benefit of using Log-Normal multiplicative noise for
the dynamics with dropout regularization for the policies (b) Shows the area under the learning curve for the
cart-pole (sum of average cost across all trials – lower is better) for various gradient clipping strategies.

distribution of controllers that are likely to perform well over plausible dynamic models. We decided
to make the policy stochastic during execution, by using a single dropout sample of the policy at every
time step. This provides a limited amount of exploration, which we found beneficial, in particular, for
the double cart-pole swing-up task.

2.3 BNNs with Log-Normal multiplicative noise

Deep-PILCO with binary dropout requires tuning the dropout probability to a value appropriate for
the model size. We experimented with other BNN models [9, 10, 6] to enable learning the dropout
probabilities from data. The best performing method in our experiments was using Log-Normal
dropout with a truncated Log-Uniform prior LogU[−10,0]; i.e. the multiplicative noise is constrained
to values between 0 and 1 [6]. Other methods we may explore in the future include Concrete
Dropout [11] and Beta distributed multiplicative noise.

3 Results

Figure 1 summarizes our results for the cart-pole domain. On the left hand side we compare
PILCO with sparse spectrum GP regression [12] for the dynamics, with Deep-Pilco using BNN
dynamics; one using binary dropout with dropout probability p=0.1, and the other using Log-Normal
dropout with a Log-Uniform(0,1] prior. The BNN models are ReLU networks with two hidden
layers of 200 units and a linear output layer. We do not discard older data during training. While
fitting the models to experience data, we learn a homoscedastic measurement noise parameter

3



for each output dimension. This noise is used to corrupt the input to the policy. The policies
are RBF networks with 30 units. The first interaction with the system corresponds to applying
uniformly-at-random controls. On the right we see a comparison of various neural network policies
in the same task, using the same BNN dynamics as on the left . The policy networks are ReLU
networks with two hidden layers of 200 units. The results show that training complex neural
network controllers provide marginally better performance than PILCO or Deep-PILCO with RBF
controllers, without reducing data efficiency. The code used in these experiments is avalable at
https://github.com/juancamilog/kusanagi.

Figure 2a illustrates the effect of the techniques on the more complicated double cart-pole swing-up
task. The setup is similar to the cart-pole task, but we change the networks architecture slightly as the
dynamics are more complex. The dynamics models are ReLU networks with 4 hidden layers of 200
units and a linear output layer. The policies are ReLU networks with four hidden layers of 50 units.
In this case, the differences in performance are clearer. We are currently preparing experiments with
these methods on more complex environments, including the AQUA robot [2].

While previous experiments combining PILCO with PEGASUS were unsuccessful [13], we found
the combination of Deep-PILCO with this type of deterministic policy evaluation to be necessary
for convergence when training neural network policies. We tried fixing the dropout masks across
optimizer iterations, and using CRNs for the particle resampling step in Deep-PILCO. Both of these
had a noticeable impact on convergence and reduced the computational cost of every policy update.
We observed an improvement on the number of trials required for finding successful controller for
the cart-pole swing-up task,and a reduction on the final accumulated cost.

References
[1] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for data-efficient

learning in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(2):408–423, 2015.

[2] David Meger, Juan Camilo Gamboa Higuera, Anqi Xu, Philippe Giguere, and Gregory Dudek. Learning
legged swimming gaits from experience. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 2332–2338. IEEE, 2015.

[3] Yarin Gal, Rowan McAllister, and Carl E. Rasmussen. Improving PILCO with Bayesian neural network
dynamics models. In Data-Efficient Machine Learning workshop, ICML, April 2016.

[4] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. Journal of machine learning research, 15(1):1929–
1958, 2014.

[5] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050–1059, 2016.

[6] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Structured bayesian pruning
via log-normal multiplicative noise. In Advances in Neural Information Processing Systems 30. 2017.

[7] Andrew Y Ng and Michael Jordan. Pegasus: A policy search method for large mdps and pomdps. In
Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pages 406–415. Morgan
Kaufmann Publishers Inc., 2000.

[8] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, pages 1310–1318, 2013.

[9] Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 2575–2583. Curran Associates, Inc., 2015.

[10] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. arXiv preprint arXiv:1701.05369, 2017.

[11] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. arXiv preprint arXiv:1705.07832, 2017.

[12] Joaquin QuiÃ±onero-Candela, Carl Edward Rasmussen, AnÃbal R Figueiras-Vidal, et al. Sparse spectrum
gaussian process regression. Journal of Machine Learning Research, 11(Jun):1865–1881, 2010.

[13] Marc Peter Deisenroth. Efficient reinforcement learning using Gaussian processes, volume 9. KIT
Scientific Publishing, 2010.

4

https://github.com/juancamilog/kusanagi

	Introduction
	Methods
	Stabilizing the optimization procedure
	Common random numbers (CRN) and PEGASUS policy evaluation
	Gradient Clipping

	Training neural network controllers
	BNNs with Log-Normal multiplicative noise

	Results

