
Probabilistic Model-Based RL

Learning Controls in Robotics Training NN controllers with Deep-PILCO

Juan Camilo Gamboa Higuera, David Meger and Gregory Dudek
{gamboa, dmeger, dudek}@cim.mcgill.ca

Problems

Automatically synthesize controllers for motor tasks on
robots deployed in the field

Challenges:
• Collecting experience data is expensive

‐ Minimize required experience (data-efficiency)
‐ Re-use data across tasks
‐ Minimize idle time between trials

Summary and Outlook
• Demonstrated training of NN policies by

Deep-PILCO with PEGASUS policy
evaluation

• Data-efficiency comparable to PILCO

Reducing variance with CRNs

Input: cost 𝑐, dynamics model 𝑝 𝑓 , initial state
distribution 𝑝 𝑥0 , parametric policy 𝜋𝜃

Sample 𝑘 dynamic models 𝑓(𝑘) ~ 𝑝 𝑓

Sample 𝑘(𝐻 − 1) random vectors 𝐳𝑡
𝑘
~𝒩(0, 𝐼)

for 𝑁 optimization iterations

Sample initial set of particles 𝐱0
(𝑘)

~ 𝑝 𝐱0

for 𝑡 = 1 to 𝐻 :

Evaluate policy 𝐮𝑡
(𝑘)

= 𝜋𝜃 𝐱𝑡
𝑘

Propagate state 𝐲𝑡+1
(𝑘)

= 𝑓 𝑘 𝐱𝑡
𝑘
, u𝑡

𝑘

Compute mean 𝝁𝑡+1 and covariance 𝚺𝑡+1 of 𝐲𝑡+1
(𝑘)

Resample 𝐱𝑡+1
𝑘

= 𝝁𝑡+1 + 𝚺𝑡+1
1/2

𝐳𝑡+1
𝑘

Evaluate cost: 𝑐𝑡+1 = 𝔼𝐱𝑡+1{𝑐 x𝑡+1 }

Update parameters 𝜃 ← 𝛼𝛻𝜃(σ1
𝐻 𝑐𝑡)

• Combine the Deep-PILCO algorithm with
PEGASUS[3] policy evaluation

Execute a policy to
gather experience.

Use experience for
model fitting

Probabilistic models
learn a distribution over
plausible dynamics
(model uncertainty)

Use model to simulate
experience and estimate
policy gradients

Minimize expected
accumulated cost over
dynamics model
distribution

Simulations via rollouts

Objective

𝐽 𝜃 = 𝔼𝜏

𝑡=0

𝐻

𝑐(𝐱𝑡) ≈

𝑡=0

𝐻

𝔼𝐱𝑡 𝑐(𝐱𝑡)

PILCO [1]
• Gaussian Process Regression for dynamics
• Demonstrated with linear and RBF policies

Deep-PILCO [2]
• MC-Dropout for dynamics
• Demonstrated with RBF policies

Both methods model 𝑝 𝐱𝑡 as Gaussian distributions via
moment-matching

Deep-PILCO rollouts as RNN

Rollouts with model equivalent to recurrent
neural network

Susceptible to vanishing and exploding
gradients [4] . Use clipping to stabilize
learning

Stochastic NN controllers

Training NNs scales better with state dimensions
than RBFs

Training stochastic policies
• Sample one 𝜋𝜃

(𝑘)
~ 𝑝 𝜋𝜃 for each dynamics

model 𝑓(𝑘) ~ 𝑝 𝑓

Using stochastic policies
• Sample a new policy 𝜋𝜃

(𝑘)
~ 𝑝 𝜋𝜃 at each time-

step

Results on Benchmark Tasks

Cost for
successful
balancing
with PILCO

Using RBF Policies
Using NN Policies

10 Hz control
rate

Double pendulum on
cart swing-up

𝐮𝑡

𝑥𝑡

𝜃1,𝑡

𝜃2,𝑡

Using NN Policies

Experience until task learned

PILCO* Deep-PILCO Ours
83 s

(1120 samples
at 13.3 Hz)

N/A 126 s
(1260 samples

at 10 Hz)

PILCO* Deep-PILCO* Ours
17.5 s ~50 s 17.5 s

Cart-pole

Double cart-pole

𝐮𝑡

𝑥𝑡

𝜃𝑡

10 Hz control
rate

Cart-pole swing-up

Effect of common
random numbers

Effect of gradient
clipping

Using CRNs and clipping
gradients stabilize learning
and improve data-efficiency

These results were obtained on
the cart-pole swing-up task
with a single initial trial with
controls sampled from an
uniform distribution

2nd Bayesian Deep Learning Workshop
at NIPS 2017

Truncated log-normal multiplicative noise

• With MC-dropout, at the 𝑖-th layer of a NN with
weights 𝑊 and biases 𝑏

ℎ𝑖 = 𝛔(ℎ𝑖−1𝑊 + 𝑏)⊙ 𝜖𝑖
𝜖𝑖 ~ Bernoulli(1 − 𝑝)

• To avoid hand-tuning 𝑝, we experimented with

𝜖𝑖 ~ LogN 𝑎,𝑏 𝜇𝑖 , 𝜎𝑖
2

regularized with a LogU 𝑎,𝑏 prior [5].

• We set 𝑎 = −10 and 𝑏 = 0, which makes 0 < 𝜖𝑖 < 1

• We constrain 𝜎𝑖
2 < Var U 𝑎,𝑏 to avoid “dead” units

• Due to their locality, RBF policies do not scale to higher
dimensional state spaces

• Deep-PILCO requires hand-tuning the dropout
parameters
‐ Increases the required experience

• Deep-PILCO shown to outperform PILCO on cart-pole
task, but required more trials (less data-efficient)

1. M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-efficient learning in
robotics and control (2015)

2. Y. Gal, R. McAllister, and C. E. Rasmussen. Improving PILCO with Bayesian neural network
dynamics models (2016)

3. A. Y. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs and POMDPs (2000)
4. Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent

neural networks (2013)
5. K. Neklyudov, D. Molchanov, A. Ashukha, and D.Vetrov. Structured Bayesian pruning via log-

normal multiplicative noise (2017)
6. D. Meger, J. C. Gamboa-Higuera, A. Xu, G. Dudek. Learning legged swimming gaits from

experience (2015)

Code available at https://github.com/juancamilog

*Results reported by the authors in [1] and [2]

• Add memory to policies?
• Add memory to dynamics?
• Alternatives for modelling uncertainty?
• Ongoing experiments on underwater robot [6]

