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Problems

Automatically synthesize controllers for motor tasks on 
robots deployed in the field

Challenges:
• Collecting experience data is expensive

‐ Minimize required experience (data-efficiency)
‐ Re-use data across tasks
‐ Minimize idle time between trials

Summary and Outlook
• Demonstrated training of NN policies by 

Deep-PILCO with PEGASUS policy 
evaluation

• Data-efficiency comparable to PILCO

Reducing variance with CRNs

Input: cost 𝑐, dynamics model 𝑝 𝑓 , initial state 
distribution 𝑝 𝑥0 , parametric policy 𝜋𝜃

Sample 𝑘 dynamic models 𝑓(𝑘) ~ 𝑝 𝑓

Sample 𝑘(𝐻 − 1) random vectors 𝐳𝑡
𝑘
~𝒩(0, 𝐼)

for 𝑁 optimization iterations

Sample initial set of particles 𝐱0
(𝑘)

~ 𝑝 𝐱0

for 𝑡 = 1 to 𝐻 :

Evaluate policy   𝐮𝑡
(𝑘)

= 𝜋𝜃 𝐱𝑡
𝑘

Propagate state 𝐲𝑡+1
(𝑘)

= 𝑓 𝑘 𝐱𝑡
𝑘
, u𝑡

𝑘

Compute mean 𝝁𝑡+1 and covariance 𝚺𝑡+1 of 𝐲𝑡+1
(𝑘)

Resample  𝐱𝑡+1
𝑘

= 𝝁𝑡+1 + 𝚺𝑡+1
1/2

𝐳𝑡+1
𝑘

Evaluate cost: 𝑐𝑡+1 = 𝔼𝐱𝑡+1{𝑐 x𝑡+1 }

Update parameters 𝜃 ← 𝛼𝛻𝜃(σ1
𝐻 𝑐𝑡)

• Combine the Deep-PILCO algorithm with 
PEGASUS[3] policy evaluation

Execute a policy to 
gather experience.

Use experience for 
model fitting

Probabilistic models 
learn a distribution over 
plausible dynamics 
(model uncertainty)

Use model to simulate
experience and estimate 
policy gradients

Minimize expected 
accumulated cost over 
dynamics model 
distribution

Simulations via rollouts

Objective

𝐽 𝜃 = 𝔼𝜏 

𝑡=0

𝐻

𝑐(𝐱𝑡) ≈

𝑡=0

𝐻

𝔼𝐱𝑡 𝑐(𝐱𝑡)

PILCO [1]
• Gaussian Process Regression for dynamics 
• Demonstrated with linear and RBF policies

Deep-PILCO [2]
• MC-Dropout for dynamics
• Demonstrated with RBF policies

Both methods model 𝑝 𝐱𝑡 as Gaussian distributions via  
moment-matching

Deep-PILCO rollouts as RNN

Rollouts with model equivalent to recurrent 
neural network

Susceptible to vanishing and exploding 
gradients [4] . Use clipping to stabilize 
learning

Stochastic NN controllers

Training NNs scales better with state dimensions 
than RBFs

Training stochastic policies
• Sample one 𝜋𝜃

(𝑘)
~ 𝑝 𝜋𝜃 for each dynamics 

model 𝑓(𝑘) ~ 𝑝 𝑓

Using stochastic policies
• Sample a new policy 𝜋𝜃

(𝑘)
~ 𝑝 𝜋𝜃 at each time-

step

Results on Benchmark Tasks

Cost for 
successful 
balancing 
with PILCO

Using RBF Policies
Using NN Policies

10 Hz control
rate

Double pendulum on 
cart swing-up

𝐮𝑡

𝑥𝑡

𝜃1,𝑡

𝜃2,𝑡

Using NN Policies

Experience until task learned

PILCO* Deep-PILCO Ours
83 s

(1120 samples
at 13.3 Hz)

N/A 126 s
(1260 samples

at 10 Hz)

PILCO* Deep-PILCO* Ours
17.5 s ~50 s 17.5 s

Cart-pole

Double cart-pole

𝐮𝑡

𝑥𝑡

𝜃𝑡

10 Hz control 
rate

Cart-pole swing-up 

Effect of common 
random numbers

Effect of gradient 
clipping

Using CRNs and clipping 
gradients stabilize learning
and improve data-efficiency

These results were obtained on 
the cart-pole  swing-up task  
with a single initial trial with 
controls sampled from an 
uniform distribution

2nd Bayesian Deep Learning Workshop 
at NIPS 2017

Truncated log-normal multiplicative noise

• With MC-dropout, at the 𝑖-th layer of a NN with 
weights 𝑊 and biases 𝑏

ℎ𝑖 = 𝛔(ℎ𝑖−1𝑊 + 𝑏)⊙ 𝜖𝑖
𝜖𝑖 ~ Bernoulli(1 − 𝑝)

• To avoid hand-tuning 𝑝, we experimented with

𝜖𝑖 ~ LogN 𝑎,𝑏 𝜇𝑖 , 𝜎𝑖
2

regularized with a LogU 𝑎,𝑏 prior [5]. 

• We set 𝑎 = −10 and 𝑏 = 0, which makes 0 < 𝜖𝑖 < 1

• We constrain 𝜎𝑖
2 < Var U 𝑎,𝑏 to avoid “dead” units

• Due to their locality, RBF policies do not scale to higher 
dimensional state spaces

• Deep-PILCO requires hand-tuning the dropout 
parameters
‐ Increases the required experience

• Deep-PILCO  shown to outperform PILCO on cart-pole
task,  but required more trials (less data-efficient)
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Code available at https://github.com/juancamilog

*Results reported by the authors in [1] and [2]

• Add memory to policies? 
• Add memory to dynamics? 
• Alternatives for modelling uncertainty?
• Ongoing experiments on underwater robot [6]


