TRAINING NEURAL NETWORK POLICIES WITH PROBABILISTIC MODEL-BASED RL Juan Camilo Gamboa Higuera, David Meger and Gregory Dudek {gamboa, dmeger, dudek}@cim.mcgill.ca

Learning Controls in Robotics

Automatically synthesize controllers for motor tasks on robots **deployed in the field**

Training NN controllers with Deep-PILCO

Reducing variance with CRNs

Combine the Deep-PILCO algorithm with \bullet PEGASUS[3] policy evaluation

Input: cost c, dynamics model p(f), initial state distribution $p(x_0)$, parametric policy π_{θ}

Sample k dynamic models $f^{(k)} \sim p(f)$ Sample k(H-1) random vectors $\mathbf{z}_{t}^{(k)} \sim \mathcal{N}(0, I)$ for *N* optimization iterations Sample initial set of particles $\mathbf{x}_0^{(k)} \sim p(\mathbf{x}_0)$

Truncated log-normal multiplicative noise

• With MC-dropout, at the *i*-th layer of a NN with weights W and biases b

> $h_i = \boldsymbol{\sigma}(h_{i-1}W + b) \odot \epsilon_i$ $\epsilon_i \sim \text{Bernoulli}(1-p)$

• To avoid hand-tuning *p*, we experimented with $\epsilon_i \sim \text{LogN}_{[a,b]}(\mu_i, \sigma_i^2)$ regularized with a $LogU_{[a,b]}$ prior [5].

Challenges:

- Collecting experience data is **expensive**
- Minimize required experience (**data-efficiency**)
- Re-use data across tasks -
- Minimize idle time between trials

Probabilistic Model-Based RL

Use model to **simulate** experience and estimate policy gradients

Minimize **expected** accumulated cost over dynamics model distribution

for t = 1 to H: Evaluate policy $\mathbf{u}_{t}^{(k)} = \pi_{\theta} \left(\mathbf{x}_{t}^{(k)} \right)$ Propagate state $\mathbf{y}_{t+1}^{(k)} = f^{(k)} \left(\mathbf{x}_t^{(k)}, \mathbf{u}_t^{(k)} \right)$ Compute mean μ_{t+1} and covariance Σ_{t+1} of $\mathbf{y}_{t+1}^{(k)}$ Resample $\mathbf{x}_{t+1}^{(k)} = \boldsymbol{\mu}_{t+1} + \boldsymbol{\Sigma}_{t+1}^{1/2} \mathbf{z}_{t+1}^{(k)}$ Evaluate cost: $c_{t+1} = \mathbb{E}_{\mathbf{x}_{t+1}} \{ c(\mathbf{x}_{t+1}) \}$ Update parameters $\theta \leftarrow \alpha \nabla_{\theta} (\sum_{1}^{H} c_{t})$

Stochastic NN controllers

Training NNs scales better with state dimensions than RBFs

Training stochastic policies

• Sample one $\pi_{\theta}^{(k)} \sim p(\pi_{\theta})$ for each dynamics model $f^{(k)} \sim p(f)$

Using stochastic policies

• Sample a new policy $\pi_{\theta}^{(k)} \sim p(\pi_{\theta})$ at each timestep

- We set a = -10 and b = 0, which makes $0 < \epsilon_i < 1$
- We constrain $\sigma_i^2 < Var\{U_{[a,b]}\}\$ to avoid "dead" units

Deep-PILCO rollouts as RNN

Rollouts with model equivalent to recurrent neural network

Susceptible to vanishing and exploding gradients [4]. Use clipping to stabilize learning

Results on Benchmark Tasks

Effect of common random numbers Effect of gradient clipping

Simulations via rollouts

Objective

$$J(\theta) = \mathbb{E}_{\tau} \left\{ \sum_{t=0}^{H} c(\mathbf{x}_t) \right\} \approx \sum_{t=0}^{H} \mathbb{E}_{\mathbf{x}_t} \{ c(\mathbf{x}_t) \}$$

PILCO [1]

- **Gaussian Process** Regression for dynamics \bullet
- Demonstrated with linear and **RBF** policies •

Deep-PILCO [2]

- **MC-Dropout** for dynamics
- Demonstrated with **RBF** policies •

Both methods model $p(\mathbf{x}_t)$ as Gaussian distributions via moment-matching

Using CRNs and clipping gradients **stabilize learning** and improve data-efficiency

These results were obtained on the cart-pole swing-up task with a single initial trial with controls sampled from an uniform distribution

 $\theta_{2,t}$

PILCO *	Deep-PILCO *	Ours
17.5 s	~50 s	17.5 s
	Cart_nole	

Problems

- Due to their **locality**, RBF policies **do not scale** to higher dimensional state spaces
- Deep-PILCO requires **hand-tuning** the dropout parameters
 - Increases the required experience
- Deep-PILCO shown to outperform PILCO on cart-pole task, but required more trials (less data-efficient)
- 1. M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-efficient learning in robotics and control (2015)
- 2. Y. Gal, R. McAllister, and C. E. Rasmussen. Improving PILCO with Bayesian neural network dynamics models (2016)
- 3. A. Y. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs and POMDPs (2000)
- 4. Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks (2013)
- 5. K. Neklyudov, D. Molchanov, A. Ashukha, and D.Vetrov. Structured Bayesian pruning via lognormal multiplicative noise (2017)
- 6. D. Meger, J. C. Gamboa-Higuera, A. Xu, G. Dudek. Learning legged swimming gaits from experience (2015)

Code available at https://github.com/juancamilog

Summary and Outlook

- Demonstrated training of NN policies by Deep-PILCO with PEGASUS policy evaluation
- Data-efficiency comparable to PILCO
- Add **memory to policies**?
- Add **memory to dynamics**?
- Alternatives for modelling uncertainty?
- Ongoing experiments on underwater robot [6]