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Abstract

We examine the problem of minimizing uncertainty in the automated construction of a visual map
of an unknown environment. Our work is motivated by the idea that a robot’s exploration policy
can impact the accuracy of the resulting map, and we seek to determine a policy that optimizes a
trade-off between accuracy and efficiency. We are further motivated by the specific requirements of
our map representation, which learns a set of implicit models of visual features. Such a representation
precludes the instantiation of explicitly parameterized landmarks, such as those employed in standard
concurrent mapping and localization frameworks. This paper examines a parameterized family of spiral
trajectories and determines parameterizations that yield reliable maps. We present experimental results
demonstrating the map construction framework and discuss the implications for future work.

1 Introduction

This paper considers the problem of determining a trajectory for automatically constructing a visual
map of an unknown environment. In particular, we examine a parameterized family of spiral-shaped tra-
jectories and examine the properties of the generated map, including accuracy and coverage, dependent
on the trajectory parameterization. Our work is motivated by the assumption that map uncertainty
can be minimized without resort to expensive update methods by collecting observations in a principled
manner. We will demonstrate that, using a conventional Kalman Filter parameterized only in the robot’s
pose, an accurate map can be constructed.

An important aspect of our work is the visual map representation [18]. Visual maps encode visual
properties of the environment in the image domain. The encodings are implicit in nature, and hence
are not easily represented in a traditional concurrent mapping and localization framework (CML), par-
ticularly those approaches where spatial domain features are inferred. A visual map is constructed by
tracking salient image features over a set of training images and then computing generative models of
the features as functions of the robot’s pose. The implicit representation of the feature models poses a
difficult challenge for accurate map construction– depending on the interpolating scheme employed to
construct the generative model, there is a tension between the tendency to linearize away the non-linear
aspects of feature behavior and the tendency to model the training data with too much specificity, re-
sulting in instability. Regardless of which end of the spectrum the model favors, it is often the case that
an implicit model will “believe” too strongly in the accuracy of the training data, and while there are
a variety of methods available for smoothing and removing outliers in the training set, our goal is to
ensure a high standard of accuracy at the outset.

This paper builds on our recent work in which a set of hand-crafted exploratory policies were examined
for their accuracy, coverage and efficiency [19]. The primary results from that work indicated that the
most accurate exploratory policy was also the most inefficient. The policy in question involved exploring
at increasing distances along a series of rays emanating from a home position (Figure 1a)). After each
ray is explored, the robot returns to the home position, re-localizing against the current map as it travels.
By contrast, the most efficient policy was a series of concentric circles (Figure 1b)). While not the least
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Figure 1: Example Star and Concentric exploratory policies

accurate of the policies examined, this policy demonstrated a clear tendency to propagate and amplify
errors over time, resulting in a map that was accurate near the home position but increasingly inaccurate
as the circles grew. These two policies can be thought of as lying at opposite extremes of a family of
parametric curves– at one end, the robot returns to the home position at a maximal frequency, and at
the other the robot never returns. The goal of this paper is to consider one such family of curves and
find a reliable medium between the needs for accuracy and efficiency.

The remainder of this paper will consider our problem in greater depth, first examining related work,
followed by a description of the visual map framework and our exploration framework. We will then
present our experimental approach and results, followed by a discussion of the results and directions for
future work.

2 Related Work

Our work is an instance of the problem of concurrent mapping and localization (CML), also known
as simultaneous localization and mapping (SLAM). This problem has received considerable attention
in the robotics community [20, 7, 21, 23, 2], primarily in the context of computing range-based maps
with spatially localized features. The state of the art in CML can be broadly subdivided into one of
two approaches (and various hybrids). One family of methods collects measurements and incrementally
builds the map while the robot moves (i.e. in an on-line fashion). Usually the map is represented as
a set of landmarks derived from a range sensor, and a Kalman filter is employed to minimize the total
uncertainty of the robot pose and the individual landmark positions [8, 6]. These techniques differ from
earlier Kalman filters employed for localization (c.f. [20, 7]) in that the landmark positions, as well as the
robot pose, are being estimated and updated over time. While there exist approximation techniques for
reducing the computational expense (cf [10]), each update in the standard on-line approach is quadratic
in the number of landmarks.

The second family of methods for CML involves first collecting measurements and then post-processing
them in a batch. The standard post-processing method is to employ Expectation Maximization (EM),
again to minimize the total uncertainty of robot poses and landmark positions [21]. One goal of our work
is to develop an on-line exploration method which maximizes the accuracy of the map without resort to
expensive map updating. While outside the scope of this paper, this result can in turn be employed as
a reliable prior for subsequent EM-style post-processing.

Maps based on visual information have also been examined. Nayar, et al pioneered the application
of principal components analysis (PCA) to construct an appearance-based map that enables a homing
behavior for robotic navigation [12]. Pourraz and Crowley considered the stability of PCA-based methods
for navigation [13], and Jugessur and Dudek looked at voting-based methods to make appearance-based
methods robust to changes in the scene or illumination [5]. Vision has also been employed for constructing
geometric maps, which can then be used in a more traditional CML context. Se et al extract stereo-based
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landmarks using a scale-invariant filter [16], and Davison and Kita considered the problem of actively
servoing a stereo head for landmark acquisition as a robot traverses uneven terrain [3]. Finally, Dellaert
et al take advantage of environmental invariants, such as a planar ceiling, to construct a mosaic-like map
by registering an ensemble of images [4].

Of particular relevance to this paper is the problem of planning a trajectory for minimizing uncer-
tainty while maximizing the utility of the observed data. MacKay considered the problem of optimally
selecting sample points in a Bayesian context for the purposes of inferring an interpolating function [9].
Whaite and Ferrie employed this approach as motivation for their ’curious machine’, a range-finder ob-
ject recognition system that selected new viewing angles in order to optimize information gain [22], and
Arbel and Ferrie further applied this approach to appearance-based object models, selecting the viewing
angle that maximized the ability to discriminate between objects [1]. In the context of mobile robotics,
Moorehead et al, considered the problem of maximizing information gain from multiple sources in order
to control an exploratory robot [11]. Finally, Roy et al applied this principle to the problem of robotic
path planning, instantiating the problem as a partially observable Markov decision process [15]. An
important result from that work was the observation that a full solution to the problem is NP-hard.

Our work is based on the visual map framework described by Sim and Dudek [18], and employs the
exploration framework described in our previous examination of exploration trajectories [19]. In the
following sections we present the details of these approaches.

3 Visual Maps

Figure 2: Landmark learning framework: Salient features are detected in the input images and tracked
across the ensemble. The resulting feature sets are subsequently parameterized as functions Fi(·) of the
robot pose.

Our visual map representation employs the landmark learning framework described in prior work [18].
We review it here in brief and refer the reader to the cited work for further details.

The object of visual mapping is to learn a set of image-domain features of a scene, and describe
them using a generative model so that they can be used to predict maximum-likelihood observations
from arbitrary camera poses. The features are initially selected using a model of visual saliency, and
subsequently tracked over the pose space. The resulting models are then cross-validated in order to
select only those features that demonstrate stability.

The framework operates as follows: Assume for the moment that the robot has collected an set of
observations of a scene with ground-truth position information associated with each image. A corner
detector is applied to a selection of the images to select an initial set of candidate features [17]. The
selected candidates are then tracked across the ensemble of images by maximizing the correlation of the
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Figure 3: A set of observations of an extracted scene feature. The grid represents an overhead view of
the pose space of the camera, and feature observations are placed at the pose corresponding to where
they were observed.

local intensity image of the feature. Figure 3 depicts the result of tracking one feature across an image
ensemble, wherein the local feature intensity image is depicted at the pose from which it was observed.

The resulting sets of tracked features are subsequently employed to construct an interpolation frame-
work for generating novel feature observations from arbitrary views. The observations themselves are
represented as the position of the feature in the image, z = [x y]T , and the interpolator is constructed
using simple bilinear interpolation between neighboring observations in the Delaunay triangulation of the
observation poses. This approach differs somewhat from the feature parameterization employed in [18],
which computes a radial basis network interpolator of a wider variety of feature properties. In practice,
an arbitrary interpolation scheme can be employed and in this work we employ a triangulation-based
approach for reasons of efficiency. However, this approach does make the interpolation more susceptible
to outlier observations. In order to evaluate the features and guard against outliers, the resulting models
are validated using leave-one-out cross-validation.

4 Exploration Framework

We have briefly described how a visual map can be constructed from an ensemble of images of the
environment acquired from known poses. In our prior work, these poses have typically been measured
by hand or using an observing robot [14]. One motivation for the current work is to automate this data
collection task using a single robot.

We have adapted the Extended Kalman Filter (EKF) localization framework described in the seminal
papers by Smith et al and Leonard and Durrant-Whyte as the basis for our exploration framework [20, 7].
While these papers assumed a geometric representation of the environment, the visual map representation
instead employs landmark observations in the image domain. It should be noted that, unlike EKF
implementations deployed for CML which encode both robot pose and landmark position parameters,
the only parameters maintained in our implementation are those of the robot pose. Given that the EKF
has been studied extensively, we repeat here only those aspects of our implementation that are particular
to our work. Note that this description also appears in our previous work on exploration trajectories [19].

At each time step k, the robot executes an action u(k), and takes a subsequent observation z. The
plant model is updated from u according to the standard EKF formulation, and a set of matches to
known features zi are extracted from the observed image.

For each successfully matched feature, a predicted observation ẑi is generated using the visual map
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and the current pose estimate, and the innovation vi(k + 1) is computed

vi(k + 1) = zi(k + 1)− ẑi(k + 1) (1)

The innovation covariance requires estimation of the Jacobian of the predicted observation given
the map and the plant estimate. We approximate this Jacobian as the gradient of the nearest face of
the model triangulation and define it as ∇hi. Defined as such, the innovation covariance follows the
standard observation model:

Si(k + 1) = ∇hiP(k + 1|k)∇hT
i + Ri(k + 1) (2)

where P is the pose covariance following the action u, and R is the cross-validation covariance asso-
ciated with the learned feature model. It is important to note that R serves several purposes– it is
simultaneously an overall indicator of the quality of the interpolation model, as well as the reliability of
the matching phase that led to the observations that define the model; finally it also accommodates the
stochastic nature of the sensor.

4.1 Outlier Detection

Feature correspondence takes place once an observation is obtained. However, there may be outlier
matches that must be filtered out. As such, we employ the gating procedure described in [7], with the
additional constraint that the gating parameter g is computed adaptively. Specifically, we accept feature
observations that meet the constraint

vi(k + 1)S−1
i (k + 1)vT

i (k + 1) ≤ g2 (3)

where
g2 = max(gbase, ḡ + 2σg) (4)

and gbase is a user defined threshold, and ḡ and σg are the average and standard deviation of the set
of gating values computed for each feature observation (that is, the left-hand side of Equation 3). This
selection of g allows the filter to correct itself when several observations indicate strong divergence from
the predicted observations– indicating a high probability that the filter has diverged and affording the
opportunity to correct the error.

4.2 Map Update

Given the set of gated observations, the EKF is updated according to the standard formulation, whereby
the set of filtered innovation measurements is compounded into a single observation vector and a least-
squares solution is computed for the Kalman gain. Combined with the plant model, a pose estimate
and associated covariance are obtained. Once an updated pose estimate is available, the successfully
matched features are inserted into the visual map, using the estimated pose as their observation pose.
It should be noted that we also insert those observations that were invalidated by the gating procedure.
We take this approach because it serves to increase the cross-validation covariance associated with the
mis-matched feature, thereby reducing its influence for future localization. At the end of the exploration
procedure, only those features that serve to match reliably and localize reliably can be selected and
retained.

5 Parameterized Trajectories

In our previous work, we examined a set of hand-crafted trajectories based on an intuitive sense of how
the robot might be able to minimized uncertainty while exploring [19]. In this paper, we will formalize
our approach and examine an analytic family of trajectories, parameterized over a single parameter, that
aims to capture the variety of properties that are important for accurate and efficient exploration. The
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(f) n=5.6

Figure 4: Sample trajectories for a variety of values of n.

specific parametric curve that we examine is expressed as the distance r from the origin as a function of
time:

rn(t) =
kt

2 + sin nt
(5)

where k is a dilating constant that is fixed for our experiments and n parameterizes the curve to control
the frequency with which the robot moves toward the origin. Some examples of the curve for a variety
of values of n are shown in Figure 4. Note that in the extreme cases, the curve never moves toward the
origin (n = 0), or will do so with very high frequency (n → ∞). Also of interest are integral values of
n, where the curve never self-intersects, and has n distinct lobes. Finally, note that from an efficiency
standpoint, the new space covered as a function of θ decreases roughly monotonically as n increases,
since for larger n the robot spends an increasing amount of time in previously explored territory.

6 Experimentation

6.1 Setup

We chose to run our experiments in a simulated environment in order to obtain accurate ground truth.
The environment is composed of a single 1200cm by 600cm rectangular room, with images from a real
laboratory environment texture-mapped on to the walls. The robot has a ring of sixteen evenly spaced
sonar sensors which are employed solely for detecting collisions. The robot’s odometry model is set to add
normally distributed zero-mean, 1% standard deviation error to translations and normally distributed
zero-mean, 2% standard deviation error to rotations. Each observation is collected by placing a simulated
camera at the ground truth pose of the robot, and snapping two images, one along the global x axis
and one along the y axis. It is assumed that in a real-world setting the camera has the ability to align
itself using a procedure which is external to the robot drive mechanism, possibly using a compass and
pan-tilt unit or an independent turret, such as that which is available on a Nomad 200 robot. A single
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observation is defined as the composite image obtained by tiling the two images side by side. Figure 5
illustrates a typical image returned by the camera in one direction in the simulated environment.

Figure 5: Simulated camera view.

The experiments were conducted as follows: for values of n ∈ [0.0, 8.0] at increments of 0.1, the robot
was placed at the center of the room, and the trajectory rn(t) was executed over five degree increments
in t for 1000 time steps (whereby one time step involved a rotation followed by a translation). The
constant k in Equation 5 was set to 20cm. At each pose, an observation was obtained and the Kalman
Filter was updated. The visual map was updated whenever the filter indicated that the robot was more
than 6.7cm from the nearest observation in the visual map. The ground-truth pose, the filter pose and
the control inputs were recorded for each pose along the trajectory.

6.2 Results
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Figure 6: (a,b,c): Filter vs ground truth trajectories for various n. (d,e,f): Filter error and odometry
error versus time for various n.
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Figure 6a),b),c) depicts a selection of the ground-truth trajectory plotted against the filter trajectory
for different values of n. The disparity between the two trajectories is an indicator of the accuracy of
the visual map, since the poses of the images inserted into the visual map correspond to the filter poses.
Given that small rotation errors near the beginning of the trajectory can lead to large errors at the edges
of the map, even if the map itself is conformal, we adjusted the orientation of the filter trajectory around
the starting pose to find the best fit against the ground-truth.
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Figure 7: Mapping accuracy and efficiency as a function of n.

Figure 6d),e),f) depicts the filter error versus ground truth, as well as the odometry error versus
ground truth over time for the corresponding values of n. From these figures, one can observe that for
some values of n, odometry out-performs the filter, whereas for other values the filter tracks ground
truth more accurately.

For each value of n it is possible to compute the mean filter and odometric error over the entire
trajectory. Figure 7a) plots the mean error values for odometry and the filter as a function of n. It
is interesting to note that as n increases the odometry error tends to increase, due to the increasing
total magnitude of rotations performed by the robot, but the filter error remains roughly constant.
This suggests that mapping accuracy is roughly independent of the choice of n. Note, however, the
prominent spikes in the filter error corresponding to neighborhoods of integral values of n. These values
correspond to trajectories that never self-intersect, or demonstrate a high degree of parallelism with
nearby observations. As such, it appears that errors will propagate significantly or the filter may even
diverge when insufficient constraints are available between neighboring paths (an instance of the aperture
problem). The lone exception to this trend is the value for n = 0. In this particular case, however, the
small amount of rotation at each time step leads to a well-constrained plant model in the Kalman Filter.

Finally, Figure 7b) depicts the length of each trajectory as a function of n. The trajectory length
is an approximate measure of the inefficiency of the trajectory for exploration, since the radius of the
convex hull of the explored space is bounded from above by ktmax, where tmax is the maximal time value,
a constant across our experiments. Periodic minima in the trajectory length correspond to points where
the exploration was terminated prematurely because the robot was unable to safely continue. In all of
these cases, the filter estimate had diverged significantly from ground truth. As expected, increasing
values of n lead to increased inefficiency.
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7 Discussion and Future Work

We have presented an analysis of a family of parametric curves and its suitability for generating ex-
ploration trajectories for solving the concurrent mapping and localization problem, as it pertains to
the construction of a visual map of an unknown environment. This study was conducted under the
premise that mapping uncertainty can be managed by selecting an appropriate exploratory trajectory.
The results demonstrate that the parametric family under consideration is in general a suitable choice
for exploration in that for most parameterizations the error in the generated map is small relative to
odometric error. However, it was interesting to note a subset of parameterizations that systematically
led to divergence. A somewhat surprising result was that mapping error was relatively small for the
simple spiral trajectory corresponding to n = 0. While this can be explained in part by the small amount
of accumulated odometric error, it runs contrary to our prior findings. Nonetheless, our hypothesis is
that if the exploration were to continue over a longer time interval, the filter will eventually diverge.
Furthermore, the potential for the presence of obstacles in a real environment would impose circumnav-
igation requirements which could introduce the kinds of odometric errors that might lead to divergence.
As such, our conclusions are that it is worth the additional effort of “re-homing” the robot from time to
time, corresponding to employing a larger value of n.

An important aspect of of the exploratory trajectories considered in this work is that they are
computed independently of the state of the robot’s map or the uncertainty in the filter. An obvious
direction for future investigation is the question of determining a locally optimal trajectory given the
current map and filter state. Furthermore, while it is beyond the scope of this paper, the family of
curves studied pose the problem that the robot needs to determine a starting position at the outset, not
to mention that the rotational symmetry of the curves make them less suitable for irregularly shaped
environments. One potential solution to this problem is to partition the environment and build a separate
visual map for each partition. Our ongoing work reflects this goal of dealing with larger environments.
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