
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Self-calibration of a vision-based sensor network

Dimitri Marinakis *, Gregory Dudek

Centre for Intelligent Machines, McGill University 3480 University St, Montreal, Quebec, Canada H3A 2A7

Received 23 January 2006; accepted 21 June 2006

Abstract

When a network of vision-based sensors is emplaced in an environment for applications such as surveillance or monitoring the spatial
relationships between the sensing units must be inferred or computed for self-calibration purposes. In this paper we describe a technique
to solve one aspect of this self-calibration problem: automatically determining the topology and connectivity information of a network of
cameras based on a statistical analysis of observed motion in the environment. While the technique can use labels from reliable cameras
systems, the algorithm is powerful enough to function using ambiguous tracking data. The method requires no prior knowledge of the
relative locations of the cameras and operates under very weak environmental assumptions. Our approach stochastically samples plau-
sible agent trajectories based on a delay model that allows for transitions to and from sources and sinks in the environment. The tech-
nique demonstrates considerable robustness both to sensor error and non-trivial patterns of agent motion. The output of the method is a
Markov model describing the behavior of agents in the system and the underlying traffic patterns. The concept is demonstrated with
simulation data for systems containing up to 10 agents and verified with experiments conducted on a six camera sensor network.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Sensor networks; Perception; Self-calibration; Topology; Learning; Markov chain monte carlo; Expectation maximization

1. Introduction

In this paper, we propose and solve the non-standard
problem of inferring the relative positions of a set of sen-
sors that all look at the same scene, yet which have com-
pletely non-overlapping fields of view. This is in contrast
to the somewhat more traditional problem of inferring
the structure of a scene or tracking activities using a net-
work of sensors whose positions are known. Inferring the
position of well-separated cameras can be viewed as the
precursor to this traditional problem. In our approach,
we exploit the motion of objects between the fields of view
of the different sensors to probabilistically infer their posi-
tions. That is, when an object leaves the neighborhood of
one sensor and subsequently appears within range of
another, this suggests that the two sensors are proximal.

Our purpose is to construct a probabilistic model of the
inter-sensor connectivity information in the environment,
and from this data, reconstruct the topology of the net-
work. By ‘topology’ we are referring to the physical inter-
sensor connectivity from the point of view of an agent nav-
igating the environment.

We will illustrate the problem with a simplified abstract.
Fig. 1(a) depicts a sensor network distributed within an
indoor environment. Let us assume that the network has
been deployed for some purpose such as surveillance and
requires knowledge of the inter-node connectivity in order
to fulfill its function. During some initial calibration period
the network collects observations of agents passing by each
sensor (Fig. 1(b)). The problem we are trying to solve is
how to use these collected observations to construct the
topological description of the network shown in Fig. 1(c).
This type of network might arise if wireless cameras were
deployed in a workplace environment.

In our approach, we attempt to recover correspon-
dences between cameras by exploiting motion present

0262-8856/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2006.06.009

* Corresponding author. Tel.: +1 250 746 6907.
E-mail addresses: dmarinak@cim.mcgill.ca (D. Marinakis), dudek@

cim.mcgill.ca (G. Dudek).

www.elsevier.com/locate/imavis

Image and Vision Computing 27 (2009) 116–130

Author's personal copy

in the environment. The method is based on reconstruct-
ing agent trajectories that best explain the observational
data and using these trajectories to determine likely net-
work parameters.

For now we restrict the problem by allowing observa-
tions collected at each of the nodes to indicate only the
presence or absence of motion. In other words, we assume
that the sensors are non-discriminating and are capable of
reporting only that they have detected something, but are
not capable of providing a description or signature of what
they have detected. The data used by the algorithm consists
only of time stamped events collected from each of the
sensors. Note that the addition of more detailed sensor
information can only make the problem easier and will
be addressed in later work.

We demonstrate our approach experimentally with a six
camera network. The system automatically calibrates itself
based solely on motion detection. It is able to infer a con-
nectivity graph of the environment and inter-vertex delay
times both with a high degree of accuracy.

The ability of a surveillance or monitoring system
to automatically determine the connectivity parameters
describing its environment is useful for a number of rea-
sons. Although the topology information can be manually
entered during installation, more detailed parameters such
as inter-camera delay distributions are difficult to deter-
mine, and a change in the environment or network would
require re-calibration. Once calibrated, the connectivity
information could aid in conventional target tracking and
additional monitoring activities. For example, by recon-
structing trajectories, a vehicle monitoring network distrib-
uted about a city could help make decisions about road
improvements which might best alleviate congestion. In
addition, the topological information could be combined
with relative localization techniques [1,2] to recover a more
complete representation of the environment.

2. Related works

A number of researchers have looked at the problem of
self-configuring a multi-sensor network through the exploi-
tation of motion in the environment [3–6]. These efforts
generally assume vision-based sensors and focus on issues
regarding the processing of observations collected from
distributed sensors.

Stein [3], for example, considered recovering a rough
planar alignment of the location and orientation of the
individual cameras. Using a least-median-of-squares tech-
nique, he determined the correspondence between moving
objects in pairs of cameras. His approach, however,
required some overlap in the field of view of the cameras.

Also relying on overlapping fields of view between cam-
eras placed at adjacent sensing locations, Stauffer and Tieu
[5] described a method for building a tracking correspon-
dence model based solely on observational data. Their
work focused on determining which tracking data resulted
from observations of the same objects in sensors with over-
lapping views. Their approach was based on probabilisti-
cally determining correspondences between cameras and
ultimately using this information to calibrate a camera net-
work to better track objects between fields of view. They
verified their method with experiments conducted on a five
camera network.

Fisher [4] explored a self-localization approach for net-
works of cameras without overlapping fields of view. This
method exploited the the motion of distant moving objects
such as stars. The objects were assumed to have well-be-
haved linear or parabolic trajectories, and it was necessary
that the observed objects could be uniquely identified
across separate cameras.

In a more recent effort, Rahimi et al. [6] described a
simultaneous calibration and tracking algorithm that uses
a velocity extrapolation technique to self-localize a net-
work of non-overlapping cameras based on the motion of
a single target. Their work avoided the difficult problem
of associating observations with different targets by
assuming only one source of motion.

a

b

c

Fig. 1. An example of a sensor network which we wish to calibrate. (a)
The original ad-hoc deployment. (b) An Example of agent motion
exploited by the calibration process. (c) The desired topological connec-
tivity map of the network.

D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130 117

Author's personal copy

Connectivity information or network topology can be
recovered by exploiting motion in the environment. In con-
trast to this paper, current efforts either address a slightly
different problem than the one we are interested in [7] or
they employ considerably different methods [8,9].

In order to track multiple agents across disjoint fields of
view, Javed et al. [7] first calibrated the connectivity infor-
mation of their surveillance system using observational
data. To learn the probability of correspondence (transi-
tion probabilities) and inter-camera travel times (delay dis-
tributions), they assumed a training period in which the
data association between observations and agents was
known. Given this observation ownership information,
they employed a Parzen window technique that looks for
correspondences in agent velocity, inter-camera travel time,
and the location of agent exit and entry in the fields of view
of the camera.

Ellis, Makris, and Black [8,9] presented a technique for
topology recovery based on event detection only. In their
approach, they first identified entrance and exit points in
camera fields of view and then attempted to find correspon-
dences between these entrances and exits based on video
data. Their technique relies on exploiting temporal correla-
tion in observations of agent movements. The method
employs a threshold technique that looks for peaks in the
temporal distribution of travel times between entrance–exit
pairs; a clear peak suggesting that a correspondence exists.
The technique gave promising results on experiments car-
ried out on a six camera network. Although it requires a
large number of observations, the method does not rely
on object correlation across specific cameras. Thus, the
approach can be used to efficiently produce an approxi-
mate network connectivity graph but when the network
dynamics are complex or the traffic distribution exhibits
substantial variation, it would appear the technique will
have difficulty.

The work conducted by Ellis, Makris, and Black [8,9] on
learning network topology is of particular interest to us
since the problem they consider is very similar to the one
we address in this paper. In a later section, we will show
that our approach compares favorably to theirs.

Much of the work on network calibration through the
exploitation of motion is motivated by or incorporated into
research conducted on multi-target tracking. The work of
Javed et al. [7] and that of Stauffer and Tieu [5] for exam-
ple, is directly related to the development of multi-target
tracking systems. Similarly, one of the stated goals of Ellis
et al. [8,9] is to enhance the tracking performance of sur-
veillance systems. Since our approach relies on recovering
plausible trajectories of agent motion, we address some
of the same problems faced in this area of research.

Multi-target tracking is a well established research area in
sensor networks [10,11] and multi-robot systems [12]. One of
the key difficulties faced is that of maintaining target identi-
ties during periods when two or more targets move close
together or are unobserved for a period of time. Probabilis-
tic techniques such as Identity Mass Flow [13] have been

devised to handle this situation. Other work poses the target
identity problem as a data association problem [14–16].

Pasula et al. [17] successfully approached a traffic mon-
itoring problem from the data association perspective
through a stochastic sampling technique, although only
in simple networks. Given known sensor positions and
topology, the goal of the work was to track multiple
objects passing through the network and recover their
long-range origin/destination information. An iterative
expectation maximization algorithm was employed that
assigned probable trajectories to each vehicle. These sam-
ples were then used to update model parameters such as
link-travel time and vehicle characteristics. New trajectory
samples were generated from existing samples by swapping
vehicle assignments between pairs of adjacent sensors. A
new sample was accepted based on its relative probability
to the existing sample. The approach was verified using a
freeway simulator that modeled one-hundred cars of differ-
ent colors passing through a network of nine cameras. The
algorithm remained robust when the color discrimination
capability of the cameras was reduced, however, no results
are presented for spurious or missing observational data.

Our method of generating trajectory samples is close in
spirit to that used by Pasula et al. [17]. We approach the
data association problem of linking observations to sources
of motion through the use of Markov Chain Monte Carlo
(MCMC). Our implementation differs, however, due to the
specifics of the problem. While they inferred motion
parameters given a known network, we address the oppo-
site problem: inferring information about the network giv-
en motion in the environment.

In this paper, we present and verify a network topology
inference method based on the construction of plausible
agent trajectories. The technique employs a stochastic
expectation maximization (EM) algorithm, an established
statistical method for parameter estimation of incomplete
data models [18,19] that has been applied to many fields
including multi-target tracking [17] and mapping in robot-
ics [20,21]. The algorithm is robust to observational noise
and non-trivial agent motion through the use of a realistic
delay model that allows motion to sources and sinks in the
environment. We demonstrate the success of the approach
both with simulations and with an experiment conducted
on a six camera-based sensor network.

3. Problem description

We formalize the problem of topology inference in terms
of the inference of a weighted directed graph which cap-
tures the connectivity relationships between the positions
of the sensors’ nodes. The motion of multiple agents mov-
ing asynchronously through a sensor network region can
be modeled as a semi-Markov process. The network of sen-
sors is described as a directed graph G = (V, E), where the
vertices V = vi represent the locations where sensors are
deployed, and the edges E = ei,j represent the connectivity
between them; an edge ei,j denotes a path from the position

118 D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130

Author's personal copy

of sensor vi to the position of sensor vj. The motion of each
of the N agents in this graph can be described in terms of
their transition probability across each of the edges
An = {aij}, as well as a temporal distribution indicating
the duration of each transition Dn. The observations O =
{ot} are a list of events detected at arbitrary times from
the various vertices of the graph, which indicate the likely
presence of one of the N agents at that position at that time.

The goal of our work is to estimate the parameters
describing this semi-Markov process. We assume that the
agents’ probabilistic behavior is homogeneous; i.e., the
motion of all agents are described by the same A and D.
In addition, we must make some assumptions about the
distribution of the inter-sensor (i.e., inter-vertex) transition
times. We make the assumption that the delays in moving
between one sensor and another can be described by a win-
dowed normal distribution. We will show later, however,
that we can relax this assumption in some situations.

Given the observations O and the number of agents N,
the problem is to estimate the network connectivity param-
eters A and D, subsequently referred to as h.

4. Topology inference algorithm

In this section, we will describe our topology inference
algorithm that takes non-discriminating observations and
returns inferred network parameters. The technique
assumes knowledge of the number of agents in the environ-
ment and attempts to augment the given observations with
an additional data association that links each observation
to an individual agent.

4.1. Monte carlo expectation maximization

We use the EM algorithm [18] to solve the connectivity
problem by simultaneously converging toward both the cor-
rect observation data correspondences and the correct net-
work parameters. We iterate over the following two steps:

1) The E-Step: which calculates the expected log likeli-
hood of the complete data given the current parame-
ter guess:

Qðh; hði�1ÞÞ ¼ E½log pðO; ZjhÞjO; hði�1Þ�
where O is the vector of binary observations collected by
each sensor, and Z represents the hidden variable that
determines the data correspondence between the obser-
vations and agents moving throughout the system.

2) The M-Step: which then updates our current param-
eter guess with a value that maximizes the expected
log likelihood:

hðiÞ ¼ argmax
h

Qðh; hði�1ÞÞ

We employ MCEM [19] to calculate the E-Step because
of the intractability of summing over the high dimensional

data correspondences. We approximate Q(h,h(i�1)) by
drawing M samples of an ownership vector LðmÞ ¼ flm

i g
which uniquely assigns the agent i to the observation oi

in sample m:

hðiÞ ¼ argmax
h

1

M

XM

m¼1

log pðLðmÞ;OjhÞ
" #

where L(m) is drawn using the previously estimated h(i�1)

according to a Markov chain monte carlo sampling tech-
nique, explained in the next section.

In order to ensure an adequate burn-in time for the
Markov chain, a number of initially drawn samples of
the ownership vector are discarded. A simple heuristic is
employed in which initial samples are discarded until their
computed likelihood stops increasing at every step.

At every iteration we obtain K samples of the ownership
vector L, which are then used to re-estimate the connectiv-
ity parameter h (the M-Step). We continue to iterate over
the E-Step and the M-Step until we obtain a final estimate
of h. The process terminates when subsequent iterations
result in very small changes to h. The following pseudo
code outlines the algorithm:

WHILE (hi � hi�1
) > Threshold

Draw sample L until p(L,Ojh) levels off

Draw K samples L(k)

Update hi
given {L(1) . . . L(K)}

END WHILE

In general, we make the assumption that the inter-vertex
delays are normally distributed and determine the maxi-
mum likelihood mean and variance for each of the inter-
vertex distributions along with transition likelihoods. In a
subsequent section, we will describe how we occasionally
reject outlying low likelihood delay data and omit it from
the parameter update stage.

4.2. Markov chain monte carlo sampling

We use Markov chain monte carlo sampling to assign
each of the observations to one of the agents, thereby
breaking the multi-agent problem into multiple versions
of a single-agent problem. In the single agent case, the
observations O specify a single trajectory through the
graph which can be used to obtain a maximum likelihood
estimate for h. Therefore, we look for a data association
that breaks O into multiple single agent trajectories. We
express this data association as an ownership vector L that
assigns each of the observations to a particular agent.

Given some guess of the connectivity parameter h, we
can obtain a likely data association L using the Metropolis
algorithm; an established method of MCMC sampling [22].
From our current state in the Markov chain specified by
our current observation assignment L, we propose a sym-
metric transition to a new state by reassigning a randomly
selected observation to a new agent selected uniformly at

D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130 119

Author's personal copy

random. This new data association L 0 is then accepted or
rejected based on the following acceptance probability:

a ¼ min 1;
pðL0;OjhÞ
pðL;OjhÞ

� �

However, the acceptance probability a can be expressed in
a simple form since the trajectories described by L 0 differ
from those in L by only a few edge transitions. Consider
L as a collection of ordered non-intersecting sets contain-
ing the observations assigned to each agent
L = (T1 [T2 [� � � [TN), Tn = {wjk} where wjk refers to
the edge traversal between vertices j and k. The probability
of a single agent trajectory is then the product of all of its
edge transition probabilities:

pðT jhÞ ¼
Y
w2T

pðwjhÞ

Therefore, a proposed change that reassigns the observa-
tion on from agent y to agent x must remove an edge tra-
versal w from Ty and add it to Tx. Only the change in
the trajectories of these two agents need be considered,
since all other transitions remain unchanged. In the exam-
ple shown in Fig. 2:

a ¼ min 1;
pðT 0x; T 0y jhÞ
pðT x; T y jhÞ

� �
¼ min 1;

pðwac;wce;wbd jhÞ
pðwae;wbc;wcd jhÞ

� �

In between each complete sample of the ownership vector
L, each of the observations are tested for a potential tran-
sition to an alternative agent assignment. This testing is
accomplished in random order and should provide a large
enough spacing between realizations of the Markov chain
that we can assume some degree of independence in be-
tween samples. The resulting chain is ergodic and reversible
and should thus produce samples representative of the true
probability distribution.

4.2.1. Proof of Markov chain ergodicity

Ergodicity and reversibility in a Markov chain are suffi-
cient conditions to ensure that there exists a unique and
specified stationary distribution [23]. In our case, reversibil-
ity is guaranteed through our use of the Metropolis algo-
rithm [24]. Furthermore, if our chain is ergodic, then the
detailed balance equation specifies the stationary distribu-
tion. In our case, each state of our chain represents an
instance of the ownership vector. It has a stationary distri-
bution specified by:

pj ¼ lim
t!1

pt
ij; 8i; j 2 Z / pðLðjÞjO; hÞ

where Z represents the set of all possible realizations of the
ownership vector L and pt

ij gives the probability of reaching
L(j) from L(i) in t steps. It remains, however, to show that
our Markov chain is ergodic.

For a finite state Markov chain, ergodicity is implied by
an irreducible and aperiodic transition matrix P [24]. How-
ever, because we determine state transition probabilities
based on the Metropolis algorithm, we are ensured that if
the proposal matrix R is ergodic then so is P [24]. There-
fore, we must show that our proposal matrix R is irreduc-
ible and aperiodic.

That our proposal matrix R is ergodic can be demon-
strated by considering both a single step transition and a
k step transition where k is the number of observations
jOj. Our proposal matrix R = {rij} gives the probability
of a proposed transition from L(i) to L(j). For a single step,
rij > 0 if L(i) and L(j) are exactly the same or differ by only
one ownership assignment to a single observation. All
other elements of the one step proposal matrix are zero.
In the worst case, L(i) and L(j) can differ from each other
by k ownerships assignments where k = jOj. In this case,
the two states require k transitions to be communicable.
Therefore (rij)

k > 0, "i, j 2 Z as long as k > jOj. Since
(R)1 has non-zero diagonal elements, it is aperiodic and
since there exists a finite k such that (R)k has all positive
entries, it is irreducible.

4.3. Delay model

To make the algorithm more robust to realistic traffic
patterns, we have introduced an inter-vertex delay model
that allows for the possibility of agent transitions to and
from sources and sinks. This makes the algorithm more
robust both to shifting numbers of agents in the environ-
ment and to agents that pause or delay their motion in
between sensors. Additionally, assuming the existence of
sources and sinks, we can recover their connectivity to each
of the sensors in our network.

In addition to maintaining a vertex that represents
each sensor in our network, we introduce an additional
vertex that represents the greater environment outside
the monitored region: a source/sink node. A mixture
model is employed during the E-Step of our iterative
EM process which evaluates potential changes to agent

Fig. 2. An example of a proposed Markov chain transition. The
ownership assigned to oc has been shifted from agent y to agent x. To
evaluate this transition, the probability of the edge traversals wac, wce, wbd

must be compared to the original traversals wae, wbc, wcd.

120 D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130

Author's personal copy

trajectories. An inter-vertex delay time is assumed to
arise from either a Gaussian distribution or from a uni-
form distribution of fixed likelihood (Fig. 3). The model
allows for uniform but low probability jumps of almost
arbitrary length.

The data assigned to the Gaussian distribution are
assumed to be generated by ‘‘through-traffic’’ and are used
during the M-Step to update our belief of the inter-node
delay times and transition likelihoods. However, the data
fit to the uniform distribution are believed to be transitions
from the first vertex into the sink/source node and then
from the sink/source node to the second vertex. Therefore
they are not used for updating inter-vertex delay parame-
ters of the two nodes, but rather are used only for updating
the belief of transitions to and from the source/sink node
for the associated vertices.

While the Gaussian assigned delays are expected to be
within a realistic temporal range for direct inter-vertex
agent motion, the delay data fit to the uniform distribution
is more loosely bounded. This gives the inference technique
a manner of temporarily removing agents from the system
by assigning them to long transitions, or to explain events
that would otherwise seem extremely unlikely such as the
disappearance of an agent from one node and its almost
immediate appearance at a second.

The delay model provides robustness to noise by dis-
carding outliers in the delay data assigned to each pair of
vertices and explaining their existence as transitions to
and from a source/sink node. The key to this process is
determining whether or not a delay value should be consid-
ered an outlier. This is implemented through a tunable
parameter, called source sink log likelihood (SSLLH), that
determines the threshold probability necessary for the
delay data to be incorporated into parameter updates
(Fig. 4). The probability for an inter-vertex delay is first
calculated given the current belief of the (Gaussian) delay
distribution. If this probability is lower than the SSLLH
then this motion is interpreted as a transition made via
the source/sink node. The delay is given a probability equal
to the SSLLH, and the transition is not used to update the
network parameters associated with the origin and destina-
tion vertices.

The value assigned to the SSLLH parameter determines
how easily the algorithm discards outliers and, hence, pro-
vides a compromise between robustness to observational
noise and a tendency to discard useful data.

5. Simulation results

In this section, we will examine our approach through a
number of experiments conducted in simulation. We will
assess the performance of our topology inference algorithm
and examine the effect of varying the input parameters.

5.1. The simulator

We have developed a tool that simulates agent traffic
through an environment represented as a planar graph.
Our simulation tool takes as inputs the number of agents
in the system and a weighted graph where the edge weights
are proportional to mean transit times between the nodes.
All connections are considered two ways; i.e., each connec-
tion is made up of two directed edges. The output is a list of
observations generated by randomly walking the agents
through the environment. Inter-node transit times are ran-
domly selected from a normal distribution with a standard
deviation equal to the square root of the mean transit time
(negative transit times are rejected).

Two types of noise were modeled in order to assess per-
formance using data that we believe more closely reflects
observations collected from realistic traffic patterns. First,
a ‘white’ noise was generated by removing a percentage of
correct observations (false negatives) and replacing them
with randomly generated spurious observations (false posi-
tives). Second, a more systematic noise was generated by
taking a percentage of inter-vertex transitions and increas-
ing the Gaussian distributed delay time between them by
an additional delay value selected uniformly at random.
The range of this additional delay time was selected to be
from 0 to 20 times the average normal delay time. The hope
is that small values of these types of noise simulate the
effects of both imperfect sensors and also the tendency for
agents to stop occasionally along their trajectories; e.g., to
talk, use the water fountain, or enter an office for an period.

A number of experiments were run using the simulator
on randomly generated planar, connected graphs. The
graphs were produced by selecting a sub-graph of the
Delaunay triangulation [25] of a set of randomly distribut-
ed points. This technique has been used before to generate
random planar graphs; (see Rekleitis et al. [26] for a
‘complete description).

Si Sj

Source/Sink
Node

"Through Traffic"

High Probability Gaussian Fit Delay Data

Low Probabability Uniformly Fit Delay Data

Fig. 3. Algorithm delay model.

Delay Time

P
ro

b
ab

ili
ty

SSLLH

Accept Zone
Data not used for
Parameter Updates

Fig. 4. Graphical description of the SSLLH Parameter.

D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130 121

Author's personal copy

For each experiment, the results were obtained by
comparing the final estimated transition matrix A 0 to
the real transition matrix A. A graph of the inferred
environment was obtained by thresholding A 0. The
Hamming error was then calculated by measuring the
distance between the true and inferred graphs normal-
ized by the number of directed edges m in the true
graph:

HamErrA ¼
1

m

� � X
aij2A;a0ij2A0

½thrðaijÞ � thrða0ijÞ�
2

where thr(a) = Øaij � hø.1 Additionally, the squared error
between the true and inferred transition matrix was
calculated:

ErrA ¼
X

aij2A;a0ij2A0
ðaij � a0ijÞ

2

5.2. Assessment of the topology inference algorithm
(Level One)

5.2.1. Performance under noise free conditions

When operating with noise-free data and knowledge of
the correct number of agents in the environment, the
results show that problems involving a limited number of
agents were easy to solve given an adequate number of
observations (Fig. 5). For example, for 95 per cent of the
generated 12 node graphs the topology was perfectly
inferred with zero Hamming error for simulations with 4
agents.

5.2.2. Comparison to existing method

In most cases the thresholding method presented by Ellis
et al. [9] did not produce results as accurate as those
obtained using the method described here. Fig. 6 shows a
comparison of an implementation of their thresholding
method with our approach. Although shown to be less
accurate in our simulations, this thresholding technique is1 A threshold value of h = 0.1 was selected for our experiments.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Hamming Error / Number Directed Edges

G
ra

ph
 C

ou
nt

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Hamming Error / Number Directed Edges

G
ra

ph
 C

ou
nt

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Hamming Error / Number Directed Edges

G
ra

ph
 C

ou
nt

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Hamming Error / Number Directed Edges

G
ra

ph
 C

ou
nt

a b

c d

Fig. 5. A histogram of Hamming error per edge using the simulator with 8000 observations on 100 randomly produced graphs for: (a) 12 nodes and 4
agents, (b) 12 nodes and 10 agents, (c) 20 nodes and 4 agents, and (d) 20 nodes and 10 agents.

122 D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130

Author's personal copy

very fast and does not need to make an assumption regard-
ing the number of agents in the system.

5.2.3. Convergence and implementation assessment

Generally, the algorithm converged quickly, finding
most of the coarse structure in the first few iterations and
making incrementally smaller changes until convergence
(Fig. 7). After every iteration of the MCEM process, the
sampled ownership vectors increased in likelihood
(Fig. 8). Recall that these ownership vectors represent plau-
sible agent trajectories through the environment given the
belief of the network parameters computed during the last
iteration. Typically, most of the likelihood gain was seen in
the first few steps of an iteration. As the number of itera-
tions increased, however, the change in likelihood immedi-
ately after a parameter update decreased and a more
significant gain in likelihood was seen during the course
of a single iteration.

Modifying the number of samples K of the ownership
vector drawn each iteration effected the performance of
the algorithm. As the value of K was increased, the conver-
gence time increased and the error of the final solution
decreased (Table 1, Fig. 9). For the easier problems, fre-
quent parameter updates seemed to lead to more rapid con-
vergence and adequate accuracy. Presumably, this was
because the Markov chain both quickly reached the sta-
tionary distribution, and also because the distribution
was easy to characterize with only a few samples. However,
it seemed that the more difficult problems, such as those
involving a large number of agents, required a greater effort
during each iterative E-Step in order to produce accurate
results.

Eventually, we will look at finding a method of automat-
ing the effort placed in each iteration based on an analysis
of the likelihood trends of the sampled ownership vectors.
However, for the moment, we currently set the number of
samples K used in each iteration to an experimentally
determined intermediate value. For the remainder of the
paper, all runs of the topology inference algorithm are
conducted with K = 20.

5.2.4. Significance of graph size and the number of agents

A critical parameter is the number of agents moving in
the system relative to the number of vertices. Clearly, if
there is only one agent in the network the problem is
straightforward since (ignoring detection errors) its event
sequence can simply be ‘‘traced out’’. However, in the case
of multiple agents, the events generated by a given agent’s
movements in the network risk being incorrectly associated
with those of any other agents’. It is the relative density of
the correct pairings relative to the incorrect ones that
makes the problem more or less easy to solve.

Increasing either the number of agents present in the
environment or the size of the graph made the problem
more difficult to solve, albeit for rather different reasons.
While increasing the number of agents allowed a greater
number of probable trajectories, and was analogous to
decreasing the signal to noise ratio in the system, increasing
the graph size while holding the number of observations
steady reduced the expected number of observations per
edge in the graph. Experiments support the idea that the
accuracy of our approach for a particular number of agents
seems to depend on the ratio of observations to edges
(Fig. 10).

In the extreme case, if there are some edges that have no
observations recorded along them at all, our approach will
not have enough information to infer the correct graph. At
the minimum, an observed agent must traverse each edge at
least once.

5.2.5. Effects of observational noise

While the algorithm is robust to moderate levels of
‘white’ observational noise, its sensitivity to systematic
noise depends on the tuning of the delay model. The delay
model is controlled by the SSLLH parameter which

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

30

N
um

 G
ra

ph
s

Hamming Error / Number Directed Edges

MCEM Method
Threshold Method

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

30

N
um

 G
ra

ph
s

Hamming Error / Number Directed Edges

MCEM Method
Threshold Method

a

b

Fig. 6. Histograms of Hamming error per edge using both the threshold
method described by Ellis et al. [9] and our MCEM method. The
techniques were tested using 10 simulated agents with 8000 observations
on 100 randomly produced graphs of size: (a) 12 nodes, 48 edges; and (b)
20 nodes, 80 edges.

D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130 123

Author's personal copy

determines the probability threshold for including delay
data in the update of the network connectivity parameters.
Fig. 11 shows the result of varying the value assigned to the
SSLLH parameter for different types of noise. Fig. 12

shows the ability of the delay model to successfully identify
and discard low probability transitions and explain them as
transitions to the source/sink node.

When assigned a high SSLLH value, the mixture
approach for modeling delays was successful at minimizing
the effects of systematic noise. Even when 10 per cent of the
delay times were uniformly increased, the Hamming error
of the inferred transition matrix was near zero
(Fig. 11(a)). When the SSLLH parameter was assigned a
value representing negative infinity, the algorithm had no
method of discarding delay data and had to update its net-
work parameters given all the observations.

Moderate amounts of ‘white’, un-biased observational
noise could be handled regardless of the tuning of the delay
distribution mixture (Fig. 11(b)). However, the inferred
transition beliefs were strongly effected by heavy amounts
of this type of noise. The effect of randomly inserting and

a

d e f

b c

Fig. 7. Incremental belief of the topology of a 20 node, 80 (directed) edge graph using 4 simulated agents on 8000 observations: (a) initially (b) after 1
iteration, (c) after 2 iterations, (d) after 3 iterations (e) after 4 iterations (f) after 5 iterations (the true graph).

Fig. 8. The log likelihood of samples of the ownership vector for an
example run of the algorithm using 4 simulated agents on a 12 node, 48
edge random graph with 4000 observations. The horizontal axis gives the
sample number (across all iterations). For each iteration, only the samples
shown between the circle and the triangle are used for updating network
parameters (the M-Step).

Table 1
Comparison of performance and computational effort until convergence
as a function of K averaged over 10 graphs of 12 nodes, 24 edges

K 4 agents 10 agents

ErrA Total samples ErrA Total samples

3 0.187 70.5 0.555 221.4
20 0.141 179.1 0.399 424.8
40 0.121 314.3 0.381 630.4

124 D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130

Author's personal copy

deleting observations is to skew the distribution of likely
sampled trajectories. Hence, the inference technique devel-
ops an incorrect belief of the underlying network and its
inter-sensor transition probabilities. Since determining the
correlation between the various sensor observations is
key to our approach, it is unsurprising that after about
10 per cent of both missing and spurious observations the
performance of the algorithm drops significantly.

The robust behavior of the algorithm under noisy condi-
tions demonstrates both the general stability of the sam-
pling-based approach and the success of the delay model.
With an appropriately selected value assigned to the
SSLLH parameter, the technique can infer highly accurate
connectivity information even with moderate levels of both
systematic and white noise.

6. Experimental results

6.1. Experimental setup

To assess the performance of our technique under real-
world conditions, we conducted an experiment using a
camera-based sensor network deployed in an office build-
ing and analyzed the results using our approach.

The sensor nodes were built up of inexpensive PC hard-
ware networked together over Ethernet using custom soft-
ware. A single node consists of a 352x292 pixel resolution
Labtech USB webcam connected to a Flexstar PEGASUS
single board computer (Fig. 13). The operating system used
was Redhat linux based on kernel 2.4. The sensor nodes
contain an Intel Celeron 500Hhz CPU and 128 MB of
RAM. They are disk-less and must netboot from a central
server which they are connected to either via a wireless
bridge or a standard Ethernet cable.

A standard client/server architecture was implemented
over TCP/IP using linux sockets in the C language. Each
sensor runs an identical copy of the client program while
a single copy of the server application runs on a central
computer.

The client software functions as a motion detector based
on the Labtech webcam. During an initial period, a back-
ground image is captured from the camera and the method
for triggering an event detection is calibrated. An intensity
threshold is calibrated for each colour channel by calculat-
ing the standard deviation from the background based on a
number of captured frames:

hc ¼ C � stdfFrm0 � Bkgrd; . . . ; Frmn � Bkgrdg
where Frm is a captured frame, Bkgrd is the background
frame and C is a constant determining the sensitivity of
the system. The sensor then enters an armed state in
which captured frames are compared to the background
image, and any difference exceeding the threshold triggers
a detection event (Fig. 14). A frame rate of approximate-
ly 10 Hz is obtained. Once triggered, the sensor re-arms
itself after a couple of seconds of inactivity. The back-
ground is slowly updated to account for gradual changes

0 5 10 15 20 25
0

0.5

1

1.5

2

Iteration

S
qu

ar
ed

 E
rr

or
 o

f T
ra

ns
iti

on
 M

at
rix

K=3
K=20
K=40

0 5 10 15 20 25
0

0.5

1

1.5

2

Iteration

S
qu

ar
ed

 E
rr

or
 o

f T
ra

ns
iti

on
 M

at
rix

K=3
K=20
K=40

a

b

Fig. 9. A comparison of algorithm performance per iteration as a function
of K. Results were obtained using the simulator on a 12 node, 48 edge
random graph with 4000 observations with: (a) 4 agents; and (b) 10 agents.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ratio of Observations to Directed Edges

H
am

m
in

g
E

rr
or

/ N
um

be
r

D
ire

ct
ed

 E
dg

es

Average over 10 graphs: 12 nodes, 48 edges
Average over 10 graphs: 20 nodes, 80 edges

Fig. 10. Hamming error per edge as a function of the ratio of observations
to true (directed) edges using 4 simulated agents.

D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130 125

Author's personal copy

in the scene; e.g., changes in lighting or a re-positioned
object such as a door:

Bkgrd 0 ¼ a� Frmþ ð1� aÞ � Bkgrd

where a is a constant determining how quickly the back-
ground is updated.

Events are transmitted over TCP/IP to a central server
where they are time-stamped and logged for offline analy-
sis. The server is multi-threaded and allows control of the
system through a command line interface. In addition to
detection events, the application allows either a full resolu-
tion capture or a low-resolution streaming of images from
any sensor to the server.

The experiment was conducted in the hallways of one
wing of an office building (Fig 15). The data were collected
during a typical weekday for a period of five hours from
10:00 am to 2:30 pm. In addition to the normal traffic
one or two subjects were encouraged to stroll about the
region from time to time during the collection period in
order to increase the density of observations. A total of
approximately 1800 events were collected.

6.2. Assessment of results

Ground truth values were calculated in order to assess
the results inferred by the approach. A topological map
of the environment (Fig. 16(a)) was determined based on
an analysis of the sensor network layout shown in
Fig. 15. (Note that we have not attempted to analytically
determine reasonable connections to sources or sinks in
the environment.) Additionally, inter-vertex transitions
times for the connected sensors were recorded with a stop-
watch for a typical subject walking at a normal speed
(Table 3).

The network parameters inferred by our topology infer-
ence algorithm closely corresponded to the ground truth
values. Table 2 shows the transition matrix output by the
algorithm, and Fig. 16 compares the analytically deter-
mined and inferred topological maps. Disregarding reflex-
ive links, the difference between the inferred and
determined matrices amounts to a Hamming error of 1.
The inferred connection from D to B was not given a tran-
sition probability large enough to be detected based on our

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Noise Level

H
am

m
in

g
E

rr
or

 /
T

ru
e

N
um

be
r

of
 D

ire
ct

ed
 E

dg
es

SSLLH = –inf
SSLLH= –5
SSLLH= –25

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Noise Level

H
am

m
in

g
E

rr
or

 /
T

ru
e

N
um

be
r

of
 D

ire
ct

ed
 E

dg
es

SSLLH = –inf
SSLLH= –5
SSLLH= –25

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Noise Level

H
am

m
in

g
E

rr
or

 /
T

ru
e

N
um

be
r

of
 D

ire
ct

ed
 E

dg
es

SSLLH = –inf
SSLLH= –5
SSLLH= –25

a b

c

Fig. 11. Hamming error as a function of observational noise. The results are averaged over 10 graphs using 4 simulated agents on 12 node, 48 edge graphs
with 4000 observations. The horizontal axis indicates proportions of: (a) systematic noise; (b) white noise; (c) both systematic and white noise.

126 D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130

Author's personal copy

thresholding technique. However, the opposite edge from B

to D was correctly inferred. Of course, it would be easy to
build into the algorithm the assumption that all edges must
be two ways. A strong belief in an edge in one direction
would dictate that the opposite edge must also exist.

The mean transition times produced by the algorithm
were also consistent to those determined by stopwatch
(Table 3). Some examples of inferred delay distributions
are shown in Fig. 17.

Sensor F marks the only heavily used entrance and
exit to the region monitored by the network. The
self-connection inferred to this node is due to a detected
correlation in the delay between exit times and subse-
quent re-entry times for agent motion. In fact, this cor-
relation is due to the tendency of subjects to re-enter
the system after roughly the same time period (e.g., to

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

D
at

a
E

xp
la

in
ed

 b
y

S
ou

rc
e/

S
in

k
N

od
e

Noise Level

True SS Ratio
SLLH= –5
SLLH= –25

0 0.05 0.1 0.15 0.2 0.25
5

0

5

10
x 10

3

D
at

a
E

xp
la

in
ed

 b
y

S
ou

rc
e/

S
in

k
N

od
e

Noise Level

True SS Ratio
SLLH= –5
SLLH= –25

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

D
at

a
E

xp
la

in
ed

 b
y

S
ou

rc
e/

S
in

k
N

od
e

Noise Level

True SS Ratio
SLLH= –5
SLLH= –25

a b

c

Fig. 12. A plot of the proportion of delay data rejected as a function of observational noise. The results were averaged over 10 graphs using 4 simulated
agents on 12 node, 48 edge graphs with 4000 observations. The horizontal axis indicates proportions of: (a) systematic noise; (b) white noise; (c) both
systematic and white noise.

Fig. 13. A camera-based sensor.

D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130 127

Author's personal copy

use the washroom or photocopier). Therefore, the detec-
tion of this connection was actually a correct inference
on the part of the algorithm.

It is interesting to note that two-way connections were
inferred to the source/sink node from both sensors D and
F (Fig. 16(c)). It was possible for subjects to pass by either
of these sensors on their way into or out of the monitored
region. (The exit to the far right of the area, shown in
Fig. 15, was little used.) This demonstrates the function
of the source/sink node as a method for the algorithm to
explain sudden appearances and disappearance of agents
in the system.

Fig. 14. An example of images captured from a vision sensor: (a) the background image; (b) a frame triggering an event detection.

F

A

C

B

E

D

Fig. 15. The layout of the six camera sensor network used for experiment. Labeled triangles represent sensor positions, and the circle represents the
location of the central server.

A

B

EC

DF
B

EC

DF

A

B

EC

DF

SS A

a b c

Fig. 16. Analytical (a), inferred (b) and inferred with source/sink node (c) topological maps.

Table 2
The transition matrix inferred from the experimental data

A B C D E F SS

A 0.05 0.16 0.28 0.32 0.02 0.09 0.08
B 0.28 0.08 0.01 0.12 0.41 0.04 0.06
C 0.40 0.05 0.05 0.05 0.32 0.05 0.08
D 0.22 0.08 0.05 0.07 0.01 0.43 0.13

E 0.04 0.39 0.40 0.04 0.04 0.03 0.06
F 0.06 0.03 0.08 0.34 0.00 0.28 0.22

SS 0.08 0.07 0.09 0.25 0.03 0.49 0.00

SS refers to the source/sink node introduced by the algorithm. Bold values
over the threshold h = 0.1 are interpreted as one way edges. The under-
lined values were not directly predicted by the ground truth analysis.

128 D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130

Author's personal copy

7. Conclusions and future work

In this paper, we have presented an algorithm for learn-
ing the connectivity information of a sensor network based
on a stochastic trajectory sampling. The technique employs
a realistic model of inter-sensor delay distributions that
makes it robust to realistic variations in traffic patterns

and observational noise in general. The approach was dem-
onstrated with simulation data and verified with experi-
ments conducted on a vision-based sensor network.

Future work will look at developing a more sophisticat-
ed vision system which produces probabilistically labeled
tracking data. This additional information could be readily
incorporated into the approach and would lead to more
rapid convergence.

Acknowledgements

We thank Ionnis Rekleitis, Philippe Giguere, Junaed
Sattar, Eric Bourque, Matt Garden and others of the Mo-
bile Robotics lab, along with the CIM administration for
their technical help and good ideas. Thank-you in addition
to Michelle Theberge for the photos, proof reading, and
valuable assistance during the experiment.

References

[1] A. Savvides, C. Han, M. Strivastava, Dynamic fine-grained localiza-
tion in ad hoc networks of sensors, in: 7th annual international
conference on Mobile computing and networking, Rome, Italy, 2001,
pp. 166–179.

[2] D. Moore, J. Leonard, D. Rus, S. Teller, Robust distributed network
localization with noisy range measurements, in: Proc. of the Second
ACM Conference on Embedded Networked Sensor Systems (SenSys
’04), Baltimore, November 2004.

[3] G.P. Stein, Tracking from multiple view points: Self-calibration of
space and time, in: Computer Vision and Pattern Recognition, 1999.
IEEE Computer Society Conference on, vol. 1, June 1999, pp.
521–527.

[4] R.B. Fisher, Self-organization of randomly placed sensors, in: Eur.
Conf. on Computer Vision, Copenhagen, May 2002, pp. 146–160.

[5] C. Stauffer, K. Tieu, Automated multi-camera planar tracking
correspondence modeling, in: Proceedings of the IEEE Computer
Vision and Pattern Recognition, vol. 1, July 2003, pp. 259–266.

[6] A. Rahimi, B. Dunagan, T. Darrell, Simultaneous calibration and
tracking with a network of non-overlapping sensors, in: CVPR 2004,
vol. 1, June 2004, pp. 187–194.

[7] O. Javed, Z. Rasheed, K. Shafique, M. Shan, Tracking across
multiple cameras with disjoint views, in: The Ninth IEEE Interna-
tional Conference on Computer Vision, Nice, France, 2003.

[8] D. Makris, T. Ellis, J. Black, Bridging the gaps between cameras, in:
IEEE Conference on Computer Vision and Pattern Recognition
CVPR 2004, Washington DC, June 2004.

[9] T. Ellis, D. Makris, J. Black, Learning a multicamera topology, in:
Joint IEEE International Workshop on Visual Surveillance and
Performance Evaluation of Tracking and Surveillance, Nice, France,
October 2003, pp. 165–171.

[10] Y. Bar-Shalom, Ed., Multitarget multisensor tracking: advanced
applications. vol. II. Artech House, 1992.

[11] J. Liu, J. Liu, J. Reich, P. Cheung, F. Zhao, Distributed group
management for track initiation and maintenance in target localiza-
tion applications, in: Proceedings of 2nd International Workshop on
Information Processing in Sensor Networks (IPSN), April 2003.

[12] M. Rosencrantz, G. Gordon, S. Thrun, Locating moving entities in
indoor environments with teams of mobile robots, in: Second
international joint conference on Autonomous agents and multiagent
systems, Melbourne, Australia, 2003, pp. 233–240.

[13] J. Shin, L.J. Guibas, F. Zhao, A distributed algorithm for managing
multi-target identities in wireless ad hoc sensor networks, in:
Information Processing in Sensor Networks Second International
Workshop, IPSN 2003, Palo Alto, CA, April 2003, pp. 223–238.

Table 3
Comparison of timed and inferred delay times (both ways) between
sensors

Connection Timed Inferred

A,B 16 15/16
A,C 3 3/3
A,D 4 3/3
B,D 15 16/17
B,E 16 15/15
C,E 14 15/14
D,F 5 5/3

All values rounded to nearest second.

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

Delay in Seconds

C
ou

nt

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

Delay in Seconds

C
ou

nt

a

b

Fig. 17. Examples of delay distributions for sensor A to sensor B (a) and
sensor D to sensor F (b).

D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130 129

Author's personal copy

[14] C. Rasmussen, G. Hager, Probabilistic data association methods for
tracking multiple and compound visual objects, in: IEEE Trans.
Pattern Analysis and Machine Intelligence, 2001.

[15] T. Huang, S.J. Russell, Object identification in a bayesian context, in:
IJCAI, 1997, pp. 1276–1283.

[16] T. Huang, S.J. Russell, Object identification: a bayesian analysis with
application to traffic surveillance, Artificial Intelligence 103 (1–2)
(1998) 77–93.

[17] H. Pasula, S. Russell, M. Ostland, Y. Ritov, Tracking many objects
with many sensors, in IJCAI-99, Stockholm, 1999.

[18] A. Dempster, N. Laird, D. Rubin, Maximum likelihood from
incomplete data via the EM algorithm, Journal of the Royal
Statistical Society 39 (1977) 1–38.

[19] G. Wei, M. Tanner, A monte-carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms,
Journal of the American Statistical Association 85 (411) (1990)
699–704.

[20] W. Burgard, D. Fox, H. Jans, C. Matenar, S. Thrun, ‘‘Sonar-based
mapping with mobile robots using EM,’’ in Proc. 16th International
Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA,
1999, pp. 67–76.

[21] H. Shatkay, L.P. Kaelbling, Learning topological maps with weak
local odometric information, in: IJCAI (2), 1997, pp. 920–929.

[22] M. Tanner, Tools for Statistical Inference, 3rd ed., Springer Verlag,
New York, 1996.

[23] C. Andrieu, N. de Freitas, A. Doucet, M.I. Jordan, An introduction
to MCMC for machine learning, Machine Learning 50 (2003) 5–43.

[24] G.S. Fishman, Monte carlo concepts, algorithms, and applications,
Springer-Verlag, New York, 1996.

[25] F. Preparata, M. Shamos, Computational Geometry: An Introduc-
tion, Springer-Verlag, New York, NY, 1985.

[26] I.M. Rekleitis, V. Dujmović, G. Dudek, ‘‘Efficient topological
exploration,’’ in Proceedings of International Conference in Robotics
and Automation, Detroit, USA, May 1999, pp. 676–681.

130 D. Marinakis, G. Dudek / Image and Vision Computing 27 (2009) 116–130

