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Abstract

In this work we explore the combination of metaheuristics and learned neural
network solvers for combinatorial optimization. We do this in the context of the
transit network design problem, a uniquely challenging combinatorial optimiza-
tion problem with real-world importance. We train a neural network policy to
perform single-shot planning of individual transit routes, and then incorporate it
as one of several sub-heuristics in a modified Bee Colony Optimization (BCO)
metaheuristic algorithm. Our experimental results demonstrate that this hybrid
algorithm outperforms the learned policy alone by up to 20% and the original
BCO algorithm by up to 53% on realistic problem instances. We perform a set of
ablations to study the impact of each component of the modified algorithm.

1 Introduction

The design of urban transit networks is an important real-world problem, but is computationally
very challenging. It has some similarities with other combinatorial optimization (CO) problems
such as the Travelling Salesman problem (TSP) and Vehicle Routing Problem (VRP), but due to its
many-to-many nature, combined with the fact that demand can be satisfied by transfers between transit
lines, the problem is much more complex than those well-studied problems. The most successful
approaches to the Transit Network Design Problem (NDP) to-date have been metaheuristic algorithms.
Metaheuristics are high-level approximate strategies for problem-solving that are agnostic to the kind
of problem. Many are inspired by natural phenomena, such as Simulated Annealing (SA), Genetic
Algorithm (GA), and Bee Colony Optimization (BCO).

Metaheuristic algorithms have proven useful and remain the state-of-the-art in several very complex
optimization problems [Ahmed et al., 2019]. But little cross-over exists between the literature on this
problem and that of machine learning with neural networks. In this work, we use a neural network
system to learn low-level heuristics for the NDP, and use these learned heuristics in a metaheuristic
algorithm. We show that this synthesis of a machine learning approach and meta-heuristic approach
outperforms either of them alone.

We first develop a novel Graph Neural Network (GNN) policy model and train it in an Reinforcement
Learning (RL) context to output transit networks that minimize an established cost function. We
compare the performance of the trained GNN model to that of Nikolić and Teodorović [2013]’s BCO
approach on a standard benchmark of NDP instances [Mumford, 2013a], characterizing them over a
range of different cost functions. We then integrate this model into a metaheuristic algorithm called
BCO, as one of the heuristics that the algorithm can employ as it performs a stochastic search of the
solution space. We compare this approach to the GNN model and the unmodified BCO algorithm,
and we find that on realistically-sized problem instances, the combination outperforms the GNN by
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up to 20% and BCO by up to 53%. Lastly, we perform several ablations to understand the importance
of different components of the proposed system to its performance.

2 Related Work

2.1 Graph Networks and Reinforcement Learning for Optimization Problems

Graph Neural Networks (GNNs) are neural network models that are designed to operate on graph-
structured data [Bruna et al., 2013, Kipf and Welling, 2016, Defferrard et al., 2016, Duvenaud et al.,
2015]. They were inspired by the success of convolutional neural nets on computer vision tasks
and have been applied in many domains, including analyzing large web graphs [Ying et al., 2018],
designing printed circuit boards [Mirhoseini et al., 2021], and predicting chemical properties of
molecules [Duvenaud et al., 2015, Gilmer et al., 2017]. An overview of GNNs is provided by Battaglia
et al. [2018].

There has recently been growing interest in the application of machine learning techniques to solve
CO problems such as the TSP and VRP [Bengio et al., 2021]. As many such problems have natural
interpretations as graphs, a popular approach has been to use GNNs to solve them. A prominent
early example is the work of Vinyals et al. [2015], who propose Pointer Networks and train them via
supervised learning to solve TSP instances.

In CO problems generally, it is difficult to find a globally optimal solution but easier to compute a
scalar quality metric for any given solution. As noted by Bengio et al. [2021], this makes RL, in
which a system learns to maximize a scalar reward, a natural fit. Recent work [Dai et al., 2017, Kool
et al., 2019, Lu et al., 2019, Sykora et al., 2020] has used RL to train GNN models and have attained
impressive performance on the TSP, the VRP, and related problems.

The solutions from some neural methods come close to the quality of those from specialized TSP
algorithms such as Concorde [Applegate et al., 2001], while requiring much less run-time to com-
pute [Kool et al., 2019]. However, these methods all learn heuristics for constructing a single solution
to a single problem instance. By the nature of NP-hard problems such heuristics will always be
limited in the quality of their results; In this work, we show that a metaheuristic algorithm that
searches over multiple solutions from the learned heuristic can offer better quality.

2.2 Optimization of Public Transit

The transportation optimization literature has extensively studied the Transit Network Design Prob-
lem. This problem is NP-complete [Quak, 2003], making it impractical to find optimal solutions
for most cases. While analytical optimization and mathematical programming methods have been
successful on small instances [van Nes, 2003, Guan et al., 2006], they struggle to realistically repre-
sent the problem [Guihaire and Hao, 2008, Kepaptsoglou and Karlaftis, 2009], and so metaheuristic
approaches (as defined by Sörensen et al. [2018]) have been more widely applied. Historically, GAs,
SA, and ant-colony optimization have been most popular, along with hybrids of these methods [Gui-
haire and Hao, 2008, Kepaptsoglou and Karlaftis, 2009]. But more recent work has adapted other
metaheuristic algorithms such as BCO [Nikolić and Teodorović, 2013] and sequence-based selection
hyper-heuristics [Ahmed et al., 2019], demonstrating that they outperform approaches based on GAs
and SA.

On the other hand, while much work has used neural networks for predictive problems in urban
mobility [Xiong and Schneider, 1992, Rodrigue, 1997, Chien et al., 2002, Jeong and Rilett, 2004,
Çodur and Tortum, 2009, Li et al., 2020] and for other transit optimization problems such as
scheduling and passenger flow control [Zou et al., 2006, Ai et al., 2022, Yan et al., 2023, Jiang
et al., 2018], relatively little work has applied RL or neural networks (NNs) to the NDP. Darwish
et al. [2020] and Yoo et al. [2023] both use RL to design a network and schedule for the Mandl
benchmark [Mandl, 1980], a single small graph with just 15 nodes. Darwish et al. [2020] use a
GNN approach inspired by Kool et al. [2019], while Yoo et al. [2023] uses tabular RL. Tabular RL
approaches tend to scale poorly; meanwhile, in our own work we experimented with a nearly identical
approach to Darwish et al. [2020], but found it did not scale beyond very small instances. Both
these approaches also require a new model to be trained on each problem instance. The technique
developed here, by contrast, is able to find good solutions for realistically-sized NDP instances of
more than 100 nodes, and can be applied to problem instances unseen during training.
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3 The Transit Network Design Problem

In the NDP, one is given an augmented city graph C = (N , Es, D), comprised of a set of n nodes
N representing candidate stop locations; a set of street edges (i, j, τij) connecting the nodes, with
weights τij indicating drive times on those streets; and an n × n Origin-Destination (OD) matrix
D giving the travel demand (in number of trips) between every pair of nodes in N . The goal is to
propose a set of routesR, where each route r is a sequence of nodes in N , so as to minimize a cost
function C : C,R → R+. R is also subject to the following constraints:

1. The route network R must be connected, allowing every node in N to be reached from
every other node via transit.

2. The route network must contain exactly S routes, that is, |R| = S, where S is a parameter
set by the user.

3. Every route r ∈ R must be within stop limits MIN ≤ |r| ≤ MAX , where MIN and
MAX are parameters set by the user.

4. No route r ∈ R may contain cycles; that is, it must include each node i at most once.

We here deal with the symmetric NDP, that is: D = D⊤, (i, j, τij) ∈ Es iff. (j, i, τij) ∈ Es, and all
routes are traversed both forwards and backwards by vehicles on them.

3.1 Markov Decision Process Formulation

A Markov Decision Process (MDP) is a formalism for describing a step-by-step problem-solving
process, commonly used to define problems in RL. In an MDP, an agent interacts with an environment
over a series of time steps. At each time step t, the environment is in some state st ∈ S; the agent
takes some action at which belongs to the set At of available actions in state st. This causes a
transition to a new state st+1 ∈ S according to the state transition distribution P (s′|s, a), and also
gives the agent a numerical reward Rt ∈ R according to the reward distribution P (R|s, a, s′). The
agent acts according to a policy π(a|s), which is a probability distribution over the available actions
in each state. In RL, the goal is typically to learn a policy π through repeated interactions with the
environment, such that π maximizes some measure of reward over time.

We here describe the MDP we use to represent the Transit Network Design Problem. At a high level,
the MDP alternates at every step t between two modes: extend, where the agent selects an extension
to the route rt that it is currently planning; and halt, where the agent chooses whether to continue
extending rt or stop, adding it as-is to the transit network and beginning the planning of a new route.
This alternation is captured by the state variable extendt ∈ {True,False}, a boolean which changes
its value after every step:

extendt =

{
¬extendt−1 if t > 0

False otherwise
(1)

More completely, the state st is composed of the city graph C, the set of routesRt planned so far, the
state of the in-progress route rt, and the mode variable extendt. As C does not change with t, we
represent the st as in eqn. 2.

st = (Rt, rt, extendt) (2)

The starting state is s0 = (R0 = {}, r0 = [], extend0 = True).

When the expression (extendt = True), the available actions are drawn from SP, the set of shortest
paths between all node pairs. If rt = [], then At = {a|a ∈ SP, |a| ≤ MAX}. Otherwise, At is
comprised of paths a ∈ SP satisfying all of the following conditions:

• (i, j, τij) ∈ Es, where i is the first node of a and j is the last node of rt, or vice-versa

• a and rt have no nodes in common

• |a| ≤MAX − |rt|

Once a path at ∈ At is chosen, rt+1 is formed by appending at to the beginning or end of rt as
appropriate: rt+1 = combine(rt, at).
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When (extendt = False), the action space is given by eqn. 3.

At =


{continue} if|r| < MIN

{halt} if|r| = MAX

{continue, halt} otherwise
(3)

If at = halt, rt is added to Rt to get Rt+1, and rt+1 = [] is a new empty route; if at = continue,
thenRt+1 and rt+1 are unchanged from step t.

Thus, the full state transition distribution is deterministic, and is described by eqn. 4.

st =


(Rt = Rt−1, rt = combine(rt−1, at−1),False) if extendt−1

(Rt = Rt−1 ∪ {rt−1}, rt = [],True) if ¬extendt−1 and at−1 = halt
(Rt = Rt−1, rt = rt−1,True) if ¬extendt−1 and at−1 = continue

(4)

When |Rt| = S, the MDP terminates, giving the final reward Rt = −C(C,Rt). The reward Rt = 0
at all prior steps.

This MDP formalization imposes some helpful biases on the solution space. First, it requires all
transit routes to follow the street graph (N , Es); any route connecting i and j must also stop at all
nodes along some path between i and j, thus biasing planned routes towards covering more nodes.
Second, it biases routes towards being direct and efficient by forcing them to be composed of shortest
paths; though in the limiting case a policy may construct arbitrarily indirect routes by choosing paths
with length 2 at every step, this is unlikely as the majority of paths in SP are longer than two edges in
realistic street graphs. Thirdly and finally, the alternation between deciding to whether to continue a
route and deciding to how to extend it means that the probability of halting does not depend on how
many different extensions are possible.

3.2 Cost Function

We can define the cost function in general as being composed of three components. The cost to riders
is the average time of all passenger trips over the network:

Cp(C,R) =
∑

i,j DijτRij∑
i,j Dij

(5)

Where τRij is the time of the shortest transit trip from i to j givenR, including a time penalty pT for
each transfer. The operating cost is the total driving time of the routes:

Co(C,R) =
∑
r∈R

τr (6)

Where τr is the time needed to completely traverse a route r in both directions.

To enforce the constraints onR, we also add a term Cc, which is the fraction of node pairs that are
not connected byR plus a measure of how much |r| > MAX or |r| < MIN across all routes. The
cost function is then:

C(C,R) = αwpCp(C,R) + (1− α)woCo(C,R) + βCc(C,R) (7)

The weight α ∈ [0, 1] controls the trade-off between passenger and operator costs. wp and wo

are re-scaling constants chosen so that wpCp and woCo both vary roughly over the range [0, 1) for
different C and R; this is done so that α will properly balance the two, and to stabilize training of
the neural network policy. The values used are wp = (maxi,j Tij)

−1 and wo = (3Smaxi,j Tij)
−1,

where T is an n× n matrix of shortest-path driving times between every node pair.

4 Learned Planner

We propose to learn a policy πθ(a|s) with parameters θ with the objective of maximizing G =
∑

t Rt

on the MDP described in section 3.1. Since reward is only given at the final timestep, we have:

G = −C(C,Rfinal) (8)
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By rolling out this policy on the MDP with some city C, we can obtain a transit networkR for that
city. We denote this algorithm the Learned Planner (LP), or LP(C, α,R0 = {}).
The policy πθ is a neural network model parameterized by θ. Its “backbone” is a graph attention
network [Brody et al., 2021] which treats the city as a fully-connected graph on the nodes N , where
each edge has an associated feature vector ⌉ij containing information about demand, existing transit
connections, and the street edge (if one exists) between i and j. We note that a graph attention
network operating on a fully-connected graph has close parallels to a Transformer model [Vaswani
et al., 2017], but unlike Transformers this architecture enables the use of edge features that describe
known relationships between elements.

The backbone GNN outputs node embeddings Y , which are operated on by one of two policy “heads”,
depending on the state st: NNext for choosing among extensions when extendt = True, and NNhalt

for deciding whether to halt when extendt = False. The details of the network architecture are
provided in Appendix B in the supplementary material.

4.1 Training

Following the work of Kool et al. [2019], we train the policy network using the policy gradient
method REINFORCE with baseline [Williams, 1992] and set γ = 1. Since the reward Rt for the
last step is the negative cost and at all other steps Rt = 0, by setting the discount rate γ = 1, the
return Gt to each action at is simply Gt =

∑
t′ γ

t′−tRt = −C(C,R). The learning signal for each
action at is Gt−baseline(C, α), where the baseline function baseline(C, α) is a separate Multi-Layer
Perceptron (MLP) trained to predict the final reward obtained by the current policy for a given cost
weight α and city C.

The model is trained on a variety of synthetic cities and over a range of values of α ∈ [0, 1].
S, n,MIN, and MAX are held constant during training. For each batch, a full rollout of the MDP
episode is performed, the cost is computed, and back-propagation and weight updates are applied to
both the policy network and the baseline network.

Each synthetic city begins construction by generating its nodes and street network using one of these
processes chosen at random:

• Incoming 4-nn: Sample n random 2D points uniformly in a square to give N . Add street
edges to each node i from it’s four nearest neighbours.

• Outgoing 4-nn: The same as the above, but add edges in the opposite direction.
• Voronoi: Sample m random 2D points, and compute their Voronoi diagram [Fortune, 1995].

Take the shared vertices and edges of the resulting Voronoi cells as N and Es. m is chosen
so |N | = n.

• 4-grid: Place n nodes in a rectangular grid as close to square as possible. Add edges from
each node to its horizontal and vertical neighbours.

• 8-grid: The same as the above, but also add edges between diagonal neighbours.

For all models except Voronoi, each edge is then deleted with user-defined probability ρ. If the
resulting street graph is not strongly connected (that is, all nodes are reachable from all other nodes),
it is discarded and the process is repeated. Nodes are sampled in a 30km× 30km square, and a fixed
vehicle speed of v = 15m/s is assumed to compute street edge weights τij = ||(xi, yi)−(xj , yj)||2/v.
Finally, we generate the OD matrix D by setting diagonal demands Dii = 0 and uniformly sampling
off-diagonal elements Dij ∼ [60, 800].

All neural network inputs are normalized so as to have unit variance and zero mean across the entire
dataset during training. The scaling and shifting normalization parameters are saved as part of the
model and applied to new data presented at test time.

5 Bee Colony Optimization

BCO is an algorithm inspired by how bees in a hive cooperate to search for nectar. At a high level, it
works as follows. Given an initial problem solutionR0 and a cost function C, a fixed number B of
“bee” processes are initialized withRb = R0 ∀ b ∈ [0, B]. Each bee makes a fixed number NC of
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Table 1: Statistics of the five benchmark problems used in our experiments.

City # nodes n # street edges |Es| # routes S MIN MAX Area (km2)

Mandl 15 20 6 2 8 352.7
Mumford0 30 90 12 2 15 354.2
Mumford1 70 210 15 10 30 858.5
Mumford2 110 385 56 10 22 1394.3
Mumford3 127 425 60 12 25 1703.2

random modifications toRb, discarding the modification if it increases cost C(Rb). Then each bee is
randomly designated a “recruiter” or “follower”, where P (b = follower) ∝ C(Rb). Each follower
bee bf copies the solution of a random recruiter bee br, with probability inversely related to C(Rbr ).
These alternating steps of exploration and recruitment are repeated until some termination condition
is met, and the lowest-cost solutionRbest found over the process is returned.

In Nikolić and Teodorović [2013], BCO is adapted to the NDP by dividing the worker bees into two
types, which apply different random modification processes. Given a networkRb with S routes for
city C for each bee b, each bee selects a route r ∈ Rb with probability inversely related to the amount
of demand r directly satisfies, and then selects a random terminal (first or last node) on r. Type-1
bees replace the chosen terminal with a random other terminal node in N , and make the new route
the shortest path between the new terminals. Meanwhile, type-2 bees choose with probability 0.2 to
delete the chosen terminal from the route, and with probability 0.8 to add a random node neighbouring
the chosen terminal to the route (at the start or end, depending on the terminal), making that node the
new terminal. The overall best solution is updated after every NP modification-and-recruitment steps
(making one “iteration”), and the algorithm performs I iterations before halting. Henceforth, “BCO”
refers specifically to this NDP algorithm.

We propose a modification of this algorithm, called Neural BCO (“NBCO” henceforth), in which the
type-1 bees are replaced by “neural bees”. A neural bee selects a route r ∈ R for modification in the
same manner as the type-1 and type-2 bees, but instead of selecting a terminal on r, it rolls out our
learned policy πθ to replace r with a new route r′ ← LP(C, α,R \ {r}). We replace the type-1 bee
because its action space (replacing one route by a shortest path) is a subset of the action space of the
neural bee (replacing one route by a new route composed of shortest paths), while the type-2 bee’s
action space is quite different. The algorithm is otherwise unchanged; for the full details, we refer the
reader to Nikolić and Teodorović [2013].

6 Experiments

In all experiments, the policies πθ used are trained on a dataset of 215 = 32, 768 synthetic cities
with n = 20. A 90:10 training:validation split of this dataset is used; after each epoch of training,
the model is evaluated on the validation set, and at the end of training, the model weights from the
epoch with the best validation-set performance are returned. Data augmentation is applied each time
a city is used for training. This consists of multiplying the node positions (xi, yi) and travel times
τij by a random factor cs ∼ [0.4, 1.6], rotating the node positions about their centroid by a random
angle ϕ ∼ [0◦, 360◦), and multiplying D by a random factor cd ∈ [0.8, 1.2]. During training and
evaluation, constant values S = 10,MIN = 2,MAX = 15 are used. Training proceeds for 5
epochs, with a batch size of 64 cities. When training with different random seeds, the dataset is held
constant across seeds but the data augmentation is not.

All evaluations are performed on the Mandl [Mandl, 1980] and Mumford [Mumford, 2013a] city
datasets, two popular benchmarks for evaluating NDP algorithms [Mumford, 2013b, John et al., 2014,
Kılıç and Gök, 2014, Ahmed et al., 2019]. The Mandl dataset is one small synthetic city, while the
Mumford dataset consists of four synthetic cities, labelled Mumford0 through Mumford3, that range
in size from n = 30 to n = 127, and gives values of S,MIN, and MAX to use when benchmarking
on each city. The values n, S,MIN, and MAX for Mumford1, Mumford2, and Mumford3 are taken
from three different real-world cities and their existing transit networks, giving the dataset a degree
of realism. Details of these benchmarks are given in Table 1.
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For both BCO and NBCO, we set all algorithmic parameters to the values used in the experiments
of Nikolić and Teodorović [2013]: B = 10, NC = 2, NP = 5, I = 400. We also ran BCO for up to
I = 2, 000 on several cities, but found this did not yield any improvement over I = 400. We run
NBCO with equal numbers of neural bees and type-2 bees, just as BCO uses equal numbers of type-1
and type-2 bees. Hyperparameter settings of the policy’s model architecture and training process
were arrived at by a limited manual search; for their values, we direct the reader to the configuration
files contained in our code release. We set the constraint penalty weight β = 5 in all experiments.

6.1 Results

We compare LP, BCO, and NBCO on Mandl and the four Mumford cities. To evaluate LP, we perform
100 rollouts and choose the lowest-costR from among them (denoted LP-100). Each algorithm is run
across a range of 10 random seeds, with a separate policy network trained with that seed. We report
results averaged over all of the seeds. Our main results are summarized in Table 2, which shows
results at three different α values, 0.0, 1.0, and 0.5, which optimize for the operators’ perspective,
the passengers’ perspective, and a balance of the two. This table also contains results for two ablation
experiments: one in which LP was rolled out 40, 000 times instead of 100 (denoted LP-40k), and one
in which we ran a variant of NBCO with only neural bees, no type-2 bees.

The results show that while BCO performs best on the two smallest cities in most cases, its relative
performance worsens considerably when n = 70 or more. On Mumford1, 2, and 3, for each α, LP
matches or outperforms BCO. Meanwhile, NBCO with a mixture of bee types performs best overall
on these three cities. It is better than LP-100 in every instance, improving on its cost by about 6% in
most cases at α = 1.0 and 0.5, and by up to 20% at α = 0.0; and it improves on BCO by 33% to
53% on Mumford3 depending on α.

NBCO does fail to obey route length limits on 1 out of 10 seeds when α = 0.0. This may be due
to α = 0.0 causing the benefits from under-length routes overwhelm the cost penalty due to a few
routes being too long. This could likely be resolved by simply increasing β or adjusting the specific
form of Cc.

Table 2: Average final cost C(C,R, α) achieved by each method over 10 random seeds, for three
different settings of cost weight α. Bold indicates the best in each column. Orange indicates that one
seed’s solution violated a constraint, red indicates two or three seeds did so. Percentages are standard
deviations over the 10 seeds.

City Mandl Mumford0 Mumford1 Mumford2 Mumford3
Method

α = 0.0

BCO 0.276 ± 17% 0.272 ± 16% 0.854 ± 32% 0.692 ± 40% 0.853 ± 35%
LP-100 0.317 ± 25% 0.487 ± 66% 0.853 ± 43% 0.688 ± 26% 0.710 ± 24%
LP-40k 0.273 ± 26% 0.440 ± 68% 0.805 ± 41% 0.665 ± 27% 0.690 ± 25%
NBCO 0.279 ± 20% 0.298 ± 41% 0.623 ± 26% 0.537 ± 44% 0.572 ± 46%

No-2-NB 0.290 ± 18% 0.295 ± 41% 0.670 ± 53% 0.605 ± 48% 0.574 ± 49%

α = 0.5

BCO 0.328 ± 3% 0.563 ± 2% 1.015 ± 42% 0.710 ± 36% 0.944 ± 29%
LP-100 0.343 ± 10% 0.638 ± 22% 0.742 ± 24% 0.617 ± 14% 0.612 ± 13%
LP-40k 0.329 ± 9% 0.619 ± 20% 0.718 ± 22% 0.606 ± 14% 0.601 ± 14%
NBCO 0.331 ± 7% 0.571 ± 6% 0.627 ± 8% 0.532 ± 5% 0.584 ± 37%

No-2-NB 0.330 ± 4% 0.588 ± 7% 0.639 ± 15% 0.589 ± 34% 0.596 ± 37%

α = 1.0

BCO 0.314 ± 1% 0.645 ± 5% 0.739 ± 37% 0.656 ± 38% 1.004 ± 40%
LP-100 0.335 ± 2% 0.738 ± 6% 0.600 ± 3% 0.534 ± 2% 0.504 ± 1%
LP-40k 0.325 ± 1% 0.709 ± 5% 0.587 ± 3% 0.528 ± 2% 0.498 ± 1%
NBCO 0.317 ± 1% 0.637 ± 6% 0.564 ± 3% 0.507 ± 1% 0.481 ± 2%

No-2-NB 0.320 ± 1% 0.668 ± 7% 0.570 ± 2% 0.511 ± 2% 0.486 ± 2%
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6.2 Ablations

We first observe that under the parameter settings used here, BCO and NBCO both consider a total
of B × NC × NP × I = 40, 000 different networks over a single run. To see whether NBCO’s
improvement over LP-100 is simply due to its exploring more solutions, we performed the LP-40k
experiments, taking 40, 000 samples from LP instead of 100. The results for LP-40k in Table 2 show
that it while it improves on NBCO on Mandl, for all larger cities it is only slightly better than LP-100.
The gap between LP-40k and NBCO is at least 54% larger than the gap between LP-40k and LP-100
on each Mumford city for each α value, and in 10 of the 12 cases it is more than twice as large. This
indicates that the main factor in NBCO’s improvement over LP is the metaheuristic algorithm that
guides the search through solution space.

To examine the importance of the type-2 bee to NBCO, we run another set of experiments with a
variant of NBCO with no type-2 bees, only neural bees, denoted No-2-NB. Again the results are
displayed in Table 2. We observe that with the exception of Mumford0 with α = 0.0 and Mandl with
α = 0.5, its performance is worse than with both types of bees: the very different action space of the
type-2 bees is a useful complement to the neural bees. However, this variant still outperforms BCO
and both LP variants for most cities and α values: it is the guidance of the learned heuristic by the
bee-colony metaheuristic that is responsible for most of NBCO’s superior performance.

6.3 Trade-offs Between Passenger and Operator Costs

There is a necessary trade-off between minimizing the passenger cost Cp and the operator cost Co:
making transit routes longer increases Co, but allows more and faster direct connections between
stops, and so may decrease Cp. The weight α can be set by the user to indicate how much they
care about Cp versus Co, and each algorithm output will change accordingly. Figure 1 illustrates
the trade-offs made by the different methods, as we vary α over its full range [0, 1] in steps of 0.1,
except for LP-40k, for which we only plot values for α = 0.0, 0.5, and 1.0. For the two smallest
cities (sub-figures 1a and 1b), BCO offers a superior trade-off for most α, but for the larger cities
Mumford1, 2, and 3, NBCO’s solutions not only dominate those of BCO, they achieve a much wider
range of Cp and Co than either of BCO or LP, which will be more satisfactory if the user cares only
about one or the other component.

Both LP and BCO have more narrow ranges of Cp and Co on the three larger cities, but the ranges
are mostly non-overlapping. Some of NBCO’s greater range seems to be due to combining the
non-overlapping ranges of the constituent parts, but NBCO’s range is greater than the union of LP’s
and BCO’s ranges. This implies that the larger action space of the neural bee versus the type-1 bee
allows NBCO to explore a much wider range of solutions by taking wider “steps” in solution space.
Meanwhile, LP-40k has about the same range as LP-100, implying that these wide steps must be
guided by the metaheuristic to eventually reach a wider space of solutions.

7 Discussion

7.1 Limitations

Bee Colony Optimization is just one instance of the broad class of metaheuristic algorithms, and
while the results we present are promising, it remains to be seen whether incorporating learned
heuristics into metaheuristic algorithms is a sound algorithmic strategy in general. Furthermore, in
this work we consider such a combination in light of only one CO problem, the NDP. This is a very
interesting and impactful problem, but evaluating this method on a wider variety of CO problems
such as the TSP and VRP would more broadly establish the usefulness of this strategy.

We also note that, while the Mumford dataset is a widely used benchmark, it is still synthetic data.
Establishing whether our method would be useful for transit planning in real-world cities will require
evaluating on a real-world dataset.

7.2 Conclusions

Ultimately, it is doubtful whether a single-pass generation heuristic like that implemented by the
GNN will be capable of outperforming search based methods like metaheuristics on combinatorial
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Figure 1: Trade-offs achieved by different methods between passenger cost Cp (on the x-axis) and
operator cost Co (on the y-axis), across values of α evenly spaced over the range [0, 1], averaged
over 10 random seeds. Both axes are in units of minutes. We wish to minimize both values, so the
lower-left direction in each plot represents improvement. The y-axis of sub-figure 1f is log-scaled
to better fit all curves without flattening them, while the rest are linear. A line links two points if
they have adjacent α values, so these curves show a smooth progression from low Co to low Cp as α
increases.

optimization problems like the NDP. By these problems’ nature, there is no one-step algorithm
for finding optimal solutions, and any fast-to-compute heuristic will necessarily be approximate.
Consequently, methods for exploring the solution space on a given instance have a general advantage
over such heuristics. But we have shown that the choice of heuristics can have a significant impact
on the quality of the solutions found by a metaheuristic, and learned heuristics in particular can
significantly benefit metaheuristic algorithms when used as some of their sub-heuristics.

In terms of the applicability of these methods in real cities, we note that both LP and Neural BCO
outperform BCO on all three cities - Mumford1, 2, and 3 - that were designed to match a specific
real-world city in scale. Furthermore, the gap between BCO and the other methods grows with the
size of the city. This suggests that Neural BCO may scale better to much larger problem sizes - which
is significant, as some real-world cities have hundreds or even thousands of bus stop locations [Société
de transport de Montréal, 2013].

We note that better results could likely be achieved by training a policy directly in a metaheuristic
context, rather than training it in isolation and then applying it in a metaheuristic as was done here. It
would also be interesting to use multiple separately-trained models as different heuristics within a
metaheuristic algorithm, as opposed to the single model used in our experiments. This could be seen
as a form of ensemble method, with the metaheuristic intelligently combining the strengths of the
different learned models to get the best use out of each.

We would also like to explore the training of a further Machine Learning (ML) component to act as
the higher-level metaheuristic, creating an entirely learned method for searching the solution space
for particular problem instances. Recent work on few-shot adaptation in RL [Behbahani et al., 2023]
may provide a promising starting point.

Beyond studying the relative performance of machine learning and metaheuristic approaches and
their combination, we hope by this work to draw the attention of the machine community to the NDP.
It is a uniquely challenging combinatorial optimization problem with real-world impact, with much
potential for novel and useful study by our discipline.
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Miloš Nikolić and Dušan Teodorović. Transit network design by bee colony optimization. Expert
Systems with Applications, 40(15):5945–5955, 2013.

CB Quak. Bus line planning. A passenger-oriented approach of the construction of a global line
network and an efficient timetable. Master’s thesis, Delft University, Delft, Netherlands, 2003.

Jean-Paul Rodrigue. Parallel modelling and neural networks: An overview for transportation/land
use systems. Transportation Research Part C: Emerging Technologies, 5(5):259–271, 1997.
ISSN 0968-090X. doi: https://doi.org/10.1016/S0968-090X(97)00014-4. URL https://www.
sciencedirect.com/science/article/pii/S0968090X97000144.

Société de transport de Montréal. Everything about the stm, 2013. URL https:
//web.archive.org/web/20130610123159/http://www.stm.info/english/en-bref/
a-toutsurlaSTM.htm. Accessed: 2023-05-17.

11

https://www.sciencedirect.com/science/article/pii/S0968090X18300111
https://www.sciencedirect.com/science/article/pii/S0968090X18300111
https://www.sciencedirect.com/science/article/pii/S0305054814001300
https://www.sciencedirect.com/science/article/pii/S0305054814001300
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp.zip
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp.zip
https://www.sciencedirect.com/science/article/pii/S0968090X97000144
https://www.sciencedirect.com/science/article/pii/S0968090X97000144
https://web.archive.org/web/20130610123159/http://www.stm.info/english/en-bref/a-toutsurlaSTM.htm
https://web.archive.org/web/20130610123159/http://www.stm.info/english/en-bref/a-toutsurlaSTM.htm
https://web.archive.org/web/20130610123159/http://www.stm.info/english/en-bref/a-toutsurlaSTM.htm


Kenneth Sörensen, Marc Sevaux, and Fred Glover. A history of metaheuristics. In Handbook of
heuristics, pages 791–808. Springer, 2018.

Quinlan Sykora, Mengye Ren, and Raquel Urtasun. Multi-agent routing value iteration network. In
International Conference on Machine Learning, pages 9300–9310. PMLR, 2020.

Rob van Nes. Multiuser-class urban transit network design. Transportation Research Record, 1835
(1):25–33, 2003. doi: 10.3141/1835-04. URL https://doi.org/10.3141/1835-04.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. arXiv preprint
arXiv:1506.03134, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Yihua Xiong and Jerry B Schneider. Transportation network design using a cumulative genetic
algorithm and neural network. Transportation Research Record, 1364, 1992.

Haoyang Yan, Zhiyong Cui, Xinqiang Chen, and Xiaolei Ma. Distributed multiagent deep reinforce-
ment learning for multiline dynamic bus timetable optimization. IEEE Transactions on Industrial
Informatics, 19:469–479, 2023.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. CoRR, abs/1806.01973,
2018. URL http://arxiv.org/abs/1806.01973.

Sunhyung Yoo, Jinwoo Brian Lee, and Hoon Han. A reinforcement learning approach for bus network
design and frequency setting optimisation. Public Transport, pages 1–32, 2023.

Liang Zou, Jian-min Xu, and Ling-xiang Zhu. Light rail intelligent dispatching system based on
reinforcement learning. In 2006 International Conference on Machine Learning and Cybernetics,
pages 2493–2496, 2006. doi: 10.1109/ICMLC.2006.258785.

Muhammed Yasin Çodur and Ahmet Tortum. An artificial intelligent approach to traffic accident
estimation: Model development and application. Transport, 24(2):135–142, 2009. doi: 10.3846/
1648-4142.2009.24.135-142.

A Symbols

This paper makes use of a large number of symbols. Tables 3 and 4 list and defines all of these in one
place for ease of reference. The symbols are presented in alphabetical order, with greek following
latin. The listing is broken up into two tables so that each will fit on one page.

B Neural Network Policy

In this section we will describe in detail the architecture of the neural network policy πθ that drives
the Learned Planner algorithm.

B.1 Input Features

Each node i in the graph has a feature vector xi comprised of the following components:

• (xi, yi), the spatial coordinates of i

• δsi, the number of street edges connected to i

• δDi, the number of nodes with any demand to/from i
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•
∑

j∈N Dij , the total demand to/from i

Let X = xi∀i ∈ N , a tensor of all node feature vectors.

A city with some (possibly incomplete) transit network can be viewed as a fully connected graph
with edge features that indicate the presence or absence of streets, driving times, transit connections,
and levels of demand between each pair of nodes. Our policy network is a GNN that operates on this
fully connected graph. The feature vector eij associated with each edge (i, j) is composed of the
following data:

• Dij , the demand between the nodes
• Tij , the shortest-path driving time between the nodes
• sij = 1 if (i, j, τij) ∈ Es, 0 otherwise
• τij if sij = 1, 0 otherwise
• cij = 1 ifR links i to j, 0 otherwise
• c0ij = 1 if j can be reached from i overR with no transfers, 0 otherwise
• c1ij = 1 if one transfer is needed to reach j from i overR, 0 otherwise
• c2ij = 1 if two transfers are needed to reach j from i overR, 0 otherwise
• τRij if cij = 1, 0 otherwise
• self = (i = j), a binary feature indicating whether this edge connects a node to itself

Finally, a vector st of overall state features is also used by the policy network, composed of these
elements:

• |Rt|, the number of completed routes so far
• S − |Rt|, the number of routes left to plan
• α, the parameter of the cost function C being applied in this instance
•
∑

r∈Rt
τr, the total time of all completed routes so far, which reflects the cost of operation

B.2 Architecture

The policy πθ is a neural network with three components: a GNN “backbone”, and two policy heads:
a halting module NNhalt and an extension module NNext. All nonlinearities are ReLU functions. All
attention modules are multi-headed with 4 heads. A common embedding dimension of dembed = 64
is used; unless otherwise specified, each component of the system outputs vectors of this dimension.

B.2.1 Backbone

The backbone is a graph attention network composed of five GATv2 layers separated by nonlinearities.
Each layer produces node descriptors, a nonlinearity is applied to these, and they are passed as input
to the next layer. The network takes as input the node feature collection X and the edge feature
E, and the final layer outputs a collection of node embeddings Y = {yi ∀i ∈ N}. These node
embeddings are used by the two policy heads to compute action probabilities.

B.2.2 Halting module

The halting module NNhalt first applies a two-layer multi-head attention module to compute a
descriptor of the in-progress route rt. The first layer takes the mean of the node embeddings
ymean =

∑
i∈ yi

n as the query vector, and [yi|i ∈ rt] as the key and value sequence; the second layer
takes the output of the first as the query, and uses the same key and value sequence, outputting a route
embedding vector rt. This is concatenated with st and τrt to give a vector r′t, and an MLP is applied
to r′t, outputting a scalar h. We apply a sigmoid to h get the halting policy:

π(halt) = σ(h), π(continue) = 1− σ(h) (9)

The MLP has 1 hidden layer with dimension dembed ∗ 2.

13



B.2.3 Extension module

The extension module NNext is finely tuned to the structure of the cost function. Considering first
the case where α = 1, we observe that the quality of any candidate route r is solely a function of the
edges (i, j, τrij) that it adds to the set ER of direct-transit-connection edges, where τrij denotes the
time to get from i to j on route r. Therefore, for each path a we consider when extending r to get r′,
a reasonable heuristic is to compute a scalar score oij for each edge (i, j, τr′ij), and let the path’s
“quality” be their sum oa =

∑
i,j∈a oij . Following this intuition, for each node pair, we concatenate

[yi,yj , eij , τr′ij ] into a vector and apply an MLP to to compute the scalar oij . We then set oij ← 0
if c0ij = 1, since directly-connected node-pairs are unlikely to change the quality of the solution if
connected by an additional route. Finally, we sum these to get oa.

If α > 0, then the quality of r still depends on the edges it adds to ER, but also on its length, and
whether it is a good choice to extend r by a depends generally on the state S . Thus, we concatenate
[oa, τa, st] and apply another MLP to obtain a final score ôa for each candidate path. The extension
policy is then the softmax of these values:

π(p) =
eôa∑

a′∈A eôa′
(10)

All of NNext’s constituent MLPs have 2 hidden layers, each with dimension 8. This low dimension-
ality considerably aids speed, as these MLP must be applied serially many times over a rollout of the
policy.

B.3 Baseline Network

The baseline function used to compute the learning signal Gt − b(st) during training is an MLP with
2 hidden layers of dimension 36. As the return Gt is the same for all t by construction, the baseline
need only depend on the details of the problem instance, namely α and C. The input to b(st) is a
vector composed of α and several statistics of C: the average of the node features

∑
i xi

n , the total
demand

∑
i,j Dij , and the means and standard deviations of the elements of D and T .

B.4 Training Hyper-Parameters

Training was performed using the well-known Adam optimizer. During training, dropout was applied
between all layers of all components of the policy network, but was not applied to the baseline
network. At the start of training, a calibration phase is carried out, in which the randomly initialized
policy is run over the entire training dataset without computing gradients or updating its weights.
During this phase, two things happen:

• The mean and standard deviation of all of the policy’s inputs are computed, and these are
used to normalize the network’s inputs during training and afterwards.

• The baseline network is trained to predict Gt = −C(C,LP(C, α, {}))

The pre-training of the baseline networks allows it to provide an accurate baseline as soon as training
of the policy begins, which we found helps to stabilize training, as does the input normalization.

Table 5 gives the hyper-parameters used during training.
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Table 3: Symbols (Part 1)

Symbol Definition

a A path in SP.
at The action chosen in the MDP at step t. This will be “halt” or “continue”

if extendt = False, or a path in SP if extendt = True.
b Denotes a single bee in BCO and Neural BCO.
B A parameter of the BCO and Neural BCO algorithms: the number of

bees used.
C A cost function C : C,R → R+ for a set of transit routesR operating

on a city C.
Cc The cost of constraint violations of a transit networkR.
Co The cost to the operator of a transit networkR.
Cp The cost to passengers of a transit networkR.
C C = (N , Es, D), an augmented graph representing a city.
D n×n OD matrix giving the travel demand (in number of trips) between

every node pair (i, j) ∈ N ×N .
eij A feature vector of a node pair i, j.
E A collection of feature vectors for all node pairs i, j ∈ N ×N .

extendt A boolean variable indicating whether MDP step t is a route-extending
step (True) or a step where it decides whether to halt (False).

ER A set of weighted edges (i, j, τrij) for every pair of nodes (i, j) that
are directly connected by some route r ∈ R.

Es A set of weighted edges (i, j, τij) representing streets between nodes
in N , where τij is the time needed to drive from i to j along the
connecting street.

Gt The cumulative return received by an MDP agent from step t onwards.
i Denotes a single node in N .
I The number of iterations performed by BCO and Neural BCO before

terminating.
j Denotes a node in N distinct from i.
m The number of initial points used when randomly generating a Voronoi-

style street network.
MIN A lower limit on the number of stops on any route.
MAX An upper limit on the number of stops on any route.

n The number of nodes in a city graph.
NC The number of search moves made by each bee in BCO and Neural

BCO between recruitment steps.
NP The number of modification-and-recruitment steps per iteration of BCO

and NeuralBCO
NNext A neural network component of π, used to compute the probability of

each extension action.
NNhalt A neural network component of π, used to compute the probability of

the “halt” action.
N A set of candidate transit stop locations, where n ≡ |N |.
oa A scalar “score” for a path computed at an intermediate stage of the

learned planner, computed by summing over oij for all i, j ∈ a.
oij A scalar “score” for a pair of nodes computed at an intermediate stage

of the learned planner.
pT The time taken by a passenger to make a transfer between two transit

lines, assumed to be constant across all passengers and all lines.
r A transit route, defined as a sequence of stops [i, j, ..., k] in N .
rt The partial transit route being built at step t of the MDP.
Rt The reward received by an MDP agent at step t.
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Table 4: Symbols (Part 2)

Symbol Definition

R A set of transit routes composing a transit network.
Rb The transit network solution belonging to bee b in BCO and Neural

BCO.
Rt The partial transit network at step t of the MDP.
st The state (C,Rt, rt, extendt) of the route-planning MDP at step t.
st A vector describing some features of the global MDP state at step t.
S A user-defined value giving the number of routes that a complete transit

network should contain.
SP The set of shortest paths over Es between every node pair (i, j) ∈

N ×N .
t The timestep index of the route-planning MDP.
T An n× n matrix of drive times along the shortest paths through Es for

all node pairs (i, j) ∈ N ×N .
v The assumed speed of all transit vehicles.

wo A scaling weight applied to Co in the cost function C.
wp A scaling weight applied to Cp in the cost function C.
X A collection of feature vectors for all nodes i ∈ N .
xi A feature vector of a node i.
Y A collection of vector embeddings produced by the policy’s GNN for

all nodes i ∈ N .
(xi, yi) A point in the 2D plane defined for each node i ∈ N .

α A weight that controls the tradeoff between Cp and Co in the cost
function C.

β A weight applied to Cc in the cost function C.
π A policy for the MDP.
τr The time needed to completely traverse transit route r in both direc-

tions.
τrij The time needed to travel from stop i to stop j on route r, if r directly

connects those stops.
τRij The time of the shortest possible trip through the transit network R

from stop i to stop j, which may require transfers between routes.

Table 5: Training Hyper-Parameters

Hyper-Parameter Value

Baseline model learning rate 5× 10−4

Baseline model weight decay 0.01
Policy learning rate 0.0016
Policy weight decay 8.4× 10−4

Dropout rate 0.23
S 10
MIN 2
MAX 12
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