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Abstract

We present an approach for inferring complete depth
maps from intensity images and sparse depth infor-
mation. This paper developed prior work which in-
crementally completes a sparse depth map based on
statistics information. In that prior work we have
observed that pixel ordering of the incremental re-
covery is critical to the quality of the final results.
In this paper we demonstrate improved performance
using an information-driven recovery policy to de-
termine this ordering. We have also observed that
the reconstruction across depth discontinuities was
often problematic as there was comparatively little
constraint for probabilistic inference at those loca-
tions. Further, such locations are often identified
with edges in both the range and intensity maps. In
this paper we address this problem by deferring the
reconstruction of voxels close to intensity or depth
discontinuities, leading to improved results. We also
show that color information can improve reconstruc-
tion quality. Experimental results are presented to
demonstrate the quality of the recover and to illus-
trate some new application domains such as deblur-
ring and underwater scattering compensation.

1 Introduction

In this paper we consider the use of statistical models
to transfer information between different scene rep-
resentations. In particular, we consider a collection
of intrinsic images of a scene [2] in terms of their
joint statistics (by intrinsic images, we mean retino-
topic maps of scene properties, such as irradiance
and depth). We make the assumption that this join
space obeys the Markov property and can be mod-
eled using a Markov Random Field. In particular, in
this paper we consider the joint space composed of
image intensity and depth. While the intensity map
for a scene does not strictly obey the Markov prop-
erty, this assumption that it does seems acceptable
and has been used extensively.

Given that we can compute the statistical prop-

erties of the Markov Random Field over range and
intensity, we can then use it to make various esti-
mates. In particular, in the absence of complete ob-
servations, we can fill in the missing data by mak-
ing probabilistic guesses based on the statistic of the
joint space and the partial data we do have.

In this paper we use such an approach to infer a
dense range map given only sparse initial estimates.
This is a problem of substantial practical importance
since the acquisition of accurate range data can be
slow or impractical. Specifically, in many robotics
applications sparse range data can be obtained by
dense range data take too long to measure. In such
an instance, the partial data allows us to compute
the required statistics which can then be used to infer
the missing datat. In this process, the availability of
ubiquitous image data constrains the reconstruction
process and makes it feasible.

The same approach also seems applicable to sev-
eral related problems. In the latter part of this pa-
per we demonstrate its feasibility to image deblurring
to compensation for scattering in underwater images
(another domain in which we are actively conducting
experiments).

2 Background

Our work is an instance of the 3D environment mod-
eling problem. Over the last 30 years, this problem
has received considerable attention in the computer
vision and computer graphics communities and more
recently in robotics. In the context of this paper we
will consider only a few representative solutions.

It is our belief that at least two types of data are
essential to facilitate the of a 3D model of an object
or scene. One is photometric data that can provide
high accuracy on features and edges. The other is
range data that provides the geometric information.
Intensity images alone, cannot provide complete or
accurate 3D measurements on unmarked continuous
surfaces, therefore both types of data should be in-
tegrated.



In the literature, however, much of the previ-
ous work create 3D models directly from photo-
metric data. Some of these methods are based
on projective calibration and reconstruction tech-
niques [4, 8, 6, 12]. . For example, Fitzgibbon and
Zisserman [6] proposed a method that sequentially
retrieves the projective calibration of a complete im-
age sequence based on tracking corner and/or line
features over two or more images, and reconstructs
each feature independently in 3D. Their method
solves the feature correspondence problem based on
the fundamental matrix and trifocal tensor, which
encode precisely the geometric constraints available
from two or more images of the same scene from
different viewpoints. Related work includes that of
Pollefeys et. al. [12]; they obtain a 3D model of an
scene from image sequences acquired from a freely
moving camera. The camera motion and its settings
are unknown and there is no prior knowledge about
the scene. Their method is based on a combination
of the projective reconstruction, self calibration and
dense depth estimation techniques. In general, these
methods derive the epipolar geometry and the tri-
focal tensor from point correspondences. However,
they assume that it is possible to run an interest op-
erator such as a corner detector to extract from one
of the images a sufficiently large number of points
that can then be reliably matched in the other im-
ages.

Shape-from-shading is related in spirit to what we
are doing, but it is based on a rather different set of
assumptions and methodologies. Such method [9, 11]
reconstructs a 3D scene by inferring depth from a
2D image; in general, this task is difficult, requir-
ing strong assumptions regarding surface smoothness
and surface reflectance properties.

Recent work has considered the use of both inten-
sity data as well as range measurements with promis-
ing results [13, 5, 14, 10, 15]. In their approach, Pulli
et al. [13] measure both color and geometry of real
objects, and display realistic images of objects from
arbitrary viewpoints. They use a stereo camera sys-
tem with active lighting to obtain range and intensity
images as visible from one point of view.

One of the main issues in using the above configu-
rations is that the acquisition process is very expen-
sive because dense and complete intensity and range
data are needed in order to obtain a good 3D model.

Baker and Kanade [1] used a learned representa-
tion of pixel variation to perform resolution enhance-
ment of face images. The processes employed to in-
terpolate new high-resolution pixel data is quite sim-
ilar in spirit to what we describe here, although the
application and technical details differ significantly.

The work by Freeman and Carmichael [7] on learn-
ing the relationships between intrinsic images is also
related.

Our method bases its reconstruction process on
having a small amount of range data and synthet-
ically estimating the areas of missing range by us-
ing the current available data. Except for our earlier
work [16, 17], we have not found published work deal-
ing specifically with the approach we are taking. In
particular, such a method is feasible in man-made
environments, which, in general, have inherent geo-
metric constraints, such as planar surfaces.

3 Our Statistical Approach for
Inferring Depth

We based our approach on earlier work described
by Torres-Mendez and Dudek [16]. In that work,
the voxel/pixel ordering of reconstruction (the or-
der in which we choose the next depth value to
synthesize) was determined using a predetermined
schedule over space, essentially walking a spiral from
the perimeter of a region towards the center. One
of the problem with the spiral-scan ordering was
the strong dependence on the previously estimated
voxel. In the present work, we use an information-
driven approach, in which the order of reconstruc-
tion is to first recover the values of those augmented
voxels for which we can make the most reliable in-
ferences, so that as we reconstruct we select those
voxels for reconstruction that have the largest de-
gree of boundary constraint. We also have observed
that the reconstruction across depth discontinuities
is often problematic as there is comparatively little
constraint for probabilistic inference at these loca-
tions. Further, such locations are often identified
with edges in both the range and intensity maps.
This observation leads to another modification in our
reconstruction sequence: as we recover augmented
voxels, we defer the reconstruction of augmented
voxels close to intensity or depth discontinuities as
much as possible. We use the Canny edge detec-
tor [3] for extracting the edges from the intensity
images. The incorporation of edge information to
our Markov Random Field model is very simple, we
just add that information such that each augmented
voxel now contains intensity, range (if known), and
edge information (1 is there exist an edge, 0 other-
wise).

The images used in the reconstruction process can
be achromatic (black and white) or color. In this pa-
per we compare the reconstructions using these two
types of input. It appears that color information im-
proves the reconstruction accuracy. This may be due



to the fact that the color data provides tighter con-
straint over where and how the interpolation process
should be applied. At the same time, the higher di-
mensionality of the Markov Random Field model for
color images may make the reconstruction problem
more difficult in some cases.

4 Algorithm description

Our objective is to compute depth values where only
intensity is known. We will do this by incrementally
computing a single depth value at a time by using
neighboring locations where latex crv04-torresboth
range and intensity is available. At the outset, we as-
sume that resolution of the intensity and range data
is the same and that they are already registered.
We solve the range data inference problem as an
extrapolation problem by approximating the com-
posite of range and intensity at each point as a
Markov process. Unknown range data is then in-
ferred by using the statistics of the observed range
data to determine the behavior of the Markov pro-
cess. Critical to the processes is the presence of in-
tensity data at each point where range is being in-
ferred. Intuitively, this intensity data provides re-
garding two kinds of scene phenomenon: (1) knowl-
edge of when the surface is smooth, and (2) knowl-
edge of when there is a high probability of a varia-
tion in depth. In reality, the statistical information
implicit in the data may be much more subtle than
simply these two types of event, but they illustrate
the concept. Our approach learns the required re-
lationships from the observed data, without having
to fabricate or hypothesize constraints that might be
inapplicable to a particular environment.

4.1 The Modified MRF Model

Markov Random Fields (MRFs) are used here as a
model to synthesize range. We focus on our develop-
ment of a set of augmented voxels V that contains
intensity (either from grayscale or color images), the
detected edges (from intensity) and range informa-
tion (where the range is initially unknown for most
of them). Thus, V = (I,E,R), where I is the ma-
trix of known pixel intensities (or 3 channels in case
of color images), E is the matrix of detected edges
from I, and R denotes the matrix of incomplete pixel
depths. Our interest is only in a set of such aug-
mented voxels such that one augmented voxel lies on
each ray that intersects each pixel of the input im-
age I, thus giving us a registered range image R and
intensity image I.

Let Z,, = (z,y): 1 < x,y <m denote the m X
m integer lattice (over which the images are de-

scribed); then I={I,,}, (z,y) € Z,, denotes
the gray levels of the input image, E = {E,,},
(z,y) € Zn, denotes the detected edges of I, and
R={R,,}, (z,y) € Z,, denotes the depth val-
ues. We model V as an MRF. Thus, we re-
gard I, E and R as random variables. For exam-
ple, {R = r} stands for {Ry , = 14, (z,y) € Zn}.
Given a neighborhood system N ={N,, € Z,},
where N, C Z,  denotes the neighbors of
(z,y), such that, (1) (z,y)& N,,, and
(2) (z,y) € Ny (k,1) € Ny,. An MRF over
(Zm,N) is a stochastic process indexed by Z,, for
which, for every (z,y) and every v = (i,e,7) (ie.
each augmented voxel depends only on its immedi-
ate neighbors),

P(Vm,y = Ug,y | Vk,l = Ug,1, (kal) 7é (.’E,y))
= P(Vm,y = Uzy ‘ Vk,l = Ukl (k,l) € Nm,y)v (1)

The choice of N together with the conditional prob-
ability distribution of P(I = i) and P(R = r), pro-
vides a powerful mechanism for modeling spatial con-
tinuity and other scene features. On one hand, we
choose to model a neighborhood N, as a square
mask of size nxn centered at the augmented voxel lo-
cation (x,y). This neighborhood is causal, meaning
that only those augmented voxels already containing
both, intensity and range information are considered
for the synthesis process. On the other hand, cal-
culating the conditional probabilities in an explicit
form is an infeasible task since we cannot efficiently
represent or determine all the possible combinations
between augmented voxels with its associated neigh-
borhoods. Therefore, we avoid the usual computa-
tional expense of sampling from a probability distri-
bution (Gibbs sampling, for example), and synthe-
size a depth value R, , deterministically by selecting
the range value Ry, ; from the augmented voxel whose
neighborhood most resembles the region being filled
in, i.e.,

‘/best = argmin || V:E,y - Vk,l ||7 (2)
(k1) € A

where A = {A;; C N} is the set of local neighbor-
hoods, such that 1 < \/(k — 2)2 + (I — y)?) < d. For
each successive augmented voxel this approximates
the maximum a posteriori estimate; R(k,l) is then
used to specify R(z,y). The similarity measure || . ||
is described over the partial data about locations
(z,y) and (k,[) and is calculated as follows,

> Glo,7—1)[(Is — I§)* + (Rs — Rp)*, (3)
TEN*
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Figure 1: Comparison of the reconstruction performance using the old and new versions of our algorithm.
The first two columns display the input intensity and the input range data where 61% of the total is unknown
(the white squares), respectively. The third column shows the ground truth range for comparison results.
In the fourth column, the synthesized results using the old version of our algorithm are shown, and the last
two columns show the synthesized results using the new version of our algorithm and the detected edges

from the intensity input images, respectively.

where 7 is the augmented voxel located at the cen-
ter of the neighborhood N'*, ¥ is a neighboring voxel
of ¥y. I and R are the intensity and range values
of the neighboring augmented voxels of the depth
value R, , € U to synthesize, and I’ and R’ are the
intensity and range values to be compared with and
in which, the center voxel 7y has already assigned
a depth value. G is a 2-D Gaussian kernel that
gives more weight to those voxels near the center
than those at the edge of the window.

5 Experimental Results

We run our improved algorithm on data acquired
in a real-world environment. As we did in our
earlier work, we use ground truth data from two
widely available databases. The first database ' pro-

Thttp://marathon.csee.usf.edu/range/Database.html

vides real intensity (reflectance) and range images
of indoor scenes acquired by an Odetics laser range
finder mounted on a mobile platform. The second
database 2 provides color images with complex geom-
etry and pixel-accurate ground-truth disparity data.
We start with the complete range data set as ground
truth and then hold back most of the data to simulate
the sparse sample of a real scanner and to provide in-
put to our algorithm. This allows us to compare the
quality of our reconstruction with what is actually
in the scene.

In Figure 1, we compare the synthesized results
over 4 images using the deterministic (spiral-scan or-
dering) versus the information-driven approach. The
three left columns are, from left to right, the in-
put intensity image, the input range data and the

2http://cat.middlebury.edu/stereo/newdata.html



ground truth range (for comparison purposes). The
percentage of the unknown range (shown in white)
of all input range images is 61%. The fourth column
shows the synthesized results using the determinis-
tic version of our algorithm. Note how the algorithm
performed poorly near object edges, where high dis-
continuities exist, specially in the last image, the syn-
thesis started to be wrong and continue in a spiral
fashion because of the order of the reconstruction
used. The last two columns show the synthesized re-
sults after running our information-driven version of
the algorithm and the detected edges from the input
intensity images that were used, respectively. Note
how our algorithm was able to recover well the geom-
etry of the objects in the scenes. Quantitative results
of these experiments are given in Table 1. The ab-
solute value of each error is taken and the mean of
those values is computed to arrive at the mean abso-
lute residual (MAR) error. The approximated depth
size of each scene is also given.

MAR Errors (in cms) Approx. depth
Deterministic | Information-driven | size (in cms)

10.40 8.58 600

16.58 13.48 800

12.16 11.39 500

19.17 7.12 400

Table 1: The input information and MAR errors of
the cases shown in Figure 1.

We now show how color information can improve
the synthesized results. Figure 2 displays in the
first row, the grayscale and color images of the same
scene, and to their right the input range data. The
percentage of missing range is 61%. The size of the
neighborhood is set to be 5x5 pixels. The synthesized
results after running our algorithm is shown in the
second row together with the ground truth data for
comparison purposes. It can be seen that there are
some regions where color information may help in the
synthesis process. For example, the chimney in the
center of the image is separated from the background
since they have different colors. This is hardly no-
ticeable in the grayscale image. The MAR errors are
7.71 when using grayscale and 6.39 when using color
information.

Another example is displayed in Figure 3. As the
first example, the first row shows the color image
and to their right is the input range. For this case,
71% of the total range map is unknown. The left
image of second row displays the synthesized result
and to its right is the ground truth range for compar-
ison purposes. The MAR errors are 9.41 when using

—

Color image

Input range data

Using achromatic data  Using color data Ground truth range

Synthesized range images

Figure 2: Results on achromatic and color images.
The MAR error is 7.71 when using grayscale and
6.39 when using color information.

grayscale and 7.14 when using color information. In
this case, color was useful in the reconstruction of
the cones. It is important to note that this is a dif-
ficult scene, in particular because of the many fea-
tures present on it and the limited input range that
is given.
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Figure 3: Results on grayscale and color images. 71%
of the total range map is unknown (shown in white).
The MAR error when using color is 7.14 compared
to 9.41 when using grayscale information.

5.1 Image Deblurring of Underwater
Scenes

Markov Random Fields are commonly used for im-
age restoration, as such, we want to see how our algo-
rithm performs in image deblurring to compensation
for scattering in underwater images. In Figure 4 we
show an example. Given the pair of images of a coral
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Figure 4: Results on image deblurring. (a) The blurred and deblurred images to train our algorithm. (b)
The left image is the test blurred image and to its right is the resulting deblurred image.

reef scene shown in Figure 4a, where the left image
is a blurred version of the right image, our algorithm
computes their joint statistics for deblurring the left
image shown in Figure 4b. The right image of Fig-
ure 4b is the resulting deblurred image. We can see
that most of the tiny features of the coral reef in the
blurred image were efficiently deblurred. An inter-
esting fact, however, is that the little fish is gone,
indicating that there were little statistical informa-
tion about it in the training pair.

6 Conclusions

This paper has sumarized and approach to scene re-
construction and range map inference using intensity
data. The method is based on learning the statisti-
cal relationship between range and intensity using
sample data from the image pair to be recovered. It
also appears that the method can work well using
images pairs from one part of a scene to reconstruct

range data from another part of the scene, although
those depends critically on the statistical similarity
between these regions (i.e. they need to “look simi-
lar”).

We have observed that this process can take place
using either color or achromatic images, but that
slightly better results are obtained for color images.
Superficially we can explain this by observing that
color images have “more information” in them. More
specifically, color images typically contain supple-
mentary subtle cues regarding the distinction be-
tween marking and surface boundaries, which are key
to the reconstruction process. We have also demon-
strated that the use of edge image to alter the re-
construction sequence can substantially improve the
quality for the results. Again, this relates to the
treatment of surface boundaries, where the recon-
struction process is particularly difficult.

Finally, we have observed that the same type of



process can also be used for image deblurring. A sim-
ilar application is the removal of hazing due to op-
tical scattering underwater. This latter application
appears especially important for underwater appli-
cations. It is also likely that the depth reconstruc-
tion process will operate well for underwater images,
but our promising preliminary results are difficult to
evaluate due to a lack of ground truth images. In
the underwater domain, the scattering can assist the
inference of depth from intensity, but the complexity
of the naturally occurring scene geometry makes the
problem challenging.
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