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Abstract

We present a surface radiance model for diffuse
lighting that incorporates shadows, interreflections,
and surface orientation. We show that, for smooth
surfaces, the model is an excellent approximation of
the radiosity equation. We present a new data struc-
ture and algorithm that uses this model to compute
shape—from—shading under diffuse lighting. The algo-
rithm was tested on both synthetic and real images,
and performs more accurately than the only previous
algorithm for this problem. Various causes of error
are discussed, including approximation errors in image
modelling, poor local constraints at the image bound-
ary, and ill-conditioning of the problem itself.

1 Introduction

The classical formulation of the shape—from—
shading problem, both in human psychophysics [14]
and in computer vision [3] has been to assume that
surface radiance is entirely determined by the surface
orientation relative to a point light source at infin-
ity. Shadows and interreflections are usually ignored.
When the light source is diffuse, however, this model
is not applicable, and a new approach is needed. This
is the situation that we address.

We begin by considering two examples to illustrate
the difference between point—source—at—infinity and
diffuse lighting. The first is a scene consisting of a con-
vex object with a matte surface resting on a ground
plane, and illuminated from above by a uniform hemi-
spheric source (see Figure 1). It is argued in [4] that,
because of self-shadowing, the radiance of the object
is determined by the surface normal. While this is
true for the object, it is untrue for the ground plane,
whose radiance varies continuously (because of cast
shadows) without any change in surface normal. This
ground plane shading effect is commonly used by car-
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toonists to depict contact. Children as young as three
years have been shown to be sensitive to this cue [15].

Figure 1: A computer graphics rendered image of an
ellipsoid resting on the ground and illuminated by a
uniform diffuse source.

A second example is a spherical concavity excavated
from a ground plane. A surprising result is that when
shadowing, surface orientation, and interreflection ef-
fects are all modelled, surface radiance is constant
within the concavity [9]. In particular, a spherical
concavity under diffuse lighting appears the same as a
planar surface under point-source-at-infinity lighting.
The two examples illustrate that, under diffuse light-
ing, surface normal variations are neither necessary
nor sufficient for radiance variations.

Diffuse lighting has received little attention in
vision research. This is unfortunate since diffuse light-
ing conditions are so common. For example, an over-
cast or blue sky, the sky at dawn or dusk, or the walls
and ceiling of a room all act as diffuse light sources. A
key difficulty in addressing the shape—from—shading—
under—diffuse-lighting problem is that the combined



effects of surface orientation, shadows, and interreflec-
tions are quite complex in general. Recently, it was
shown by Langer and Zucker [7, 8] that shape could
be computed from shading under diffuse lighting by
assuming that surface radiance depended primarily on
the solid angle of the source that is visible from the
surface. In this paper, we generalize that approach by
using a more accurate model of interreflections and
surface orientation effects. As we will see, this allows
us to more accurately recover shape—from—shading.

2 Global Illumination Model

We address the following situation. A matte sur-
face with albedo, p, is illuminated by a uniform hemi-
spheric source of radiance, R,... The surface radiance,
R(x), is then determined by the radiosity equation,
which accounts for shadows, surface orientation, and
interreflection effects. It is a standard model in radia-
tion heat transfer [12] and computer graphics [1], and
is written

Rx) = £

RN (x) - udQ
T Jy(x)

+ £ / R(I(x,u))N(x) -ud? (1)
T JH(x)\V(x)
where: x is a surface point; N(x) is the surface nor-
mal; H(x) = {u: N(x) - u > 0} is the hemisphere of
outgoing unit vectors; V(x) is the set of unit directions
in which the diffuse source is visible from x; df2 is an
infinitesimal solid angle; II(x,u) is the surface point
visible from x in direction u (II denotes “projection”).

Shape—from—shading could be computed exactly
by inverting the radiosity equation. An algorithm
for doing so using three images taken under point-
source—at—infinity lighting and without shadows was
presented in [10]. We consider a different situation in
which only a single image is available and the light
source is diffuse. For this situation, we seek an ap-
proximation to the radiosity equation which allows
us to recover an accurate approximation to the sur-
face shape. It is conceivable that a post hoc iterative
method such as in [10] could provide an exact solution,
although this is beyond the scope of the paper.
2.1 Interreflections

Recall the example of the convex object on a ground
plane. Observe that the bottom of the object tends
to be dark because of self-shadowing and also be-
cause it is illuminated by darker points on the ground
plane. Similarly, points on the top of the object tend
to be bright both because little shadowing occurs and
because the interreflections that do occur are from

brighter points on the ground plane. A similar obser-
vation holds for a smooth depth map: from a hilltop,
one sees mostly other hilltops, while within a valley,
one mostly sees the valley.

It follows from these observations that, under dif-
fuse lighting and constant albedo, points on a surface
tend to be illuminated by other points having similar
radiance. This idea is formalized as follows. Given
Equation (1), we approximate the right hand side
by replacing the incoming radiance, R(II(x,u)), from
other surfaces by the outgoing radiance, R(x), from x
itself. An algebraic manipulation immediately yields
an interreflection model:

pRsrc % fv(x) N(x) - u df

Ri(x) = 1= p(l—% fV(x) N(x)-udQ)

Note that interreflections are modelled as a non-linear
transformation on the direct illumination component.
This model is new and will be the basis of a new,
accurate shape—from—shading algorithm.

Observe that the interreflection model, R;, is exact
for the case of the spherical concavity (recall Section
1), since surface radiance is constant within the con-
cavity. That is, each surface point sees other surface
points of identical radiance. The model is also exact
for a matte surface of arbitrary geometry in the limit
of p — 0 since the interreflection component vanishes,
as well as in the limit of p — 1 since R(x) — Rspc. For
intermediate albedos, such as p = 0.5, we address how
well R; approximates the radiosity equation by ren-
dering surfaces using computer graphics techniques.’
Figure 2 shows a rendered image of a smooth depth
map with p = 0.5 along with a scatter plot of R(x)
versus R (x). Note the high correlation between the
two. Similar plots were observed for the other smooth
depth maps tested.

To appreciate the accuracy of the R; model, con-
sider an alternative model, in which surface normal ef-
fects are ignored. Such a model was the basis of a pre-
vious algorithm for computing shape—from—shading
under diffuse lighting [7, 8] and may be obtained by
replacing the N(x) - u expression in Equation (2) by
its average value, 0.5, over the hemisphere, yielding

R2(X) — pRsrc % fv(x) ds (3)
ST 02 b a0

!The rendering algorithm we use is an improved version
of [6]. We have verified the accuracy of the rendering algo-
rithm by rendering surfaces for which an analytic solution to
the radiosity equation is known (e.g. a spherical concavity) and
found the RMS error to be about 2%.
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Figure 2: Above: A synthetic 100 x 100 smooth depth
map was rendered using the radiosity equation R(x)
with p = 0.5. Left: The scatter plot compares R;(x)
to R(x). The R; model has a mean error of 1072 %
and standard deviation of 1%. Right: The scatter plot
compares Ro(x) to R(x). The R2 model has a mean
error of 4.9% and standard deviation 4.8%.

We refer to this as the solid angle model since the
term, fv(x) df, is the solid angle of the visible source.
The right scatter plot of Figure 2 compares R(x) and
R2(x). Note that the correlation is not as good as
with the Rj(x) model.

Finally, we address a situation in which the R;
model begins to break down. Figure 3 shows a scat-
ter plot of Ry(x) versus R(x) for the rendered scene
shown in Figure 1. Two clusters in the scatter plot ap-
pear, corresponding to points on the ground plane and
ellipsoid respectively. The R; model underestimates
the radiance on the ellipsoid, but overestimates the
radiance on the ground plane. This asymmetry is due
to the fact that the ellipsoid may receive one bounce
interreflections from the ground whereas the ground
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may receive only two (or more) bounce interreflections
from the ellipsoid [5]. Since radiance decreases with
each bounce, the interreflected radiance received by
the ground plane is less that that received by the el-
lipsoid. Thus each point on the ground tends to see
points on the ellipsoid that are darker than itself, so
the R; model overestimates the radiance of points vis-
ible from the ground. (Similar clusters occur when the
solid angle model is used.) Observe that despite this
higher order effect, the mean error of the R; model
remains quite small.
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Figure 3: A scatter plot comparing R;(x) to R(x)
for the image of Figure 1. The mean and standard
deviation of the modelling errors, R(x) — R;(x), are
1.6 % and 5.4 %.

2.2 Viewpoint assumptions

Suppose we are given a single grey-level image
I(z,y). To interpret the image intensities as due to
shading under diffuse lighting, we make a number of
viewpoint assumptions: the surface seen in the image
is matte with known albedo, p; the image is formed
under orthographic projection; the depth map z(z,y)
is a continuous, single—valued function of (x,y); the
source is a uniform hemisphere at infinity, centered
about the line of sight, with its equator at depth zero;
shadows are cast only by surfaces visible in the im-
age (in particular, the brightest surface point sees the
entire source.) Ignoring non-linearities of the sensor
response, we obtain the image intensity model:

Imas L fV(X) N(x) - u df2

Hz,9) = 1= p(1=% Jop NEx)-ud)

(4)

where I, is the maximum intensity in the image.

In the following section, we will introduce a algo-
rithm for solving Equation (4): That is, given an im-
age I(z,y), we compute a surface that satisfies Equa-
tion (4).



3 New Algorithm

The only previous algorithm for recovering shape—
from—shading under diffuse lighting is due to Langer
and Zucker (LZ) [7, 8] and is based on a solid angle
model of image intensity (recall Equation 3). Our al-
gorithm has three advantages over the LZ algorithm.
First, instead of using a coarsely sampled hemicube to
represent the 2-D region of the visible source, we rep-
resent the 1-D boundary of the visible source. This
boundary is called the skyline. From the viewing
assumptions that led to Equation 4, it follows that
a skyline is a single-valued function of the azimuth
angle.?

Second, rather than computing each pixel’s skyline
at each discrete depth, we compute it once and update
it at only those depths at which a qualitative change
occurs. As the depth of a pixel increases, closer sur-
faces obscure more distant surfaces (see Figure 4). A
visual event [2, 11, 13] occurs when one surface ob-
scures another, at which point the skyline must be
updated.

path
of N

Figure 4: As the depth of a node N increases, the
surface defining the skyline of A/ changes. A visual
event occurs at the point of change (v in the figure).
The higher node appears on the skyline when N is
above v and the lower node appears when N is below.

Third, we treat depth as a continuum. This allows
us to estimate the surface normal by fitting a plane
through positions of any neighboring pixels for which
the depth is known. (While the LZ algorithm could,
in principle, use an arbitrarily fine sampling of depth,
this would entail prohibitively large space and time
costs.) Estimating the normal allows us to use Equa-

2This is not always the case, of course. The ellipsoid of
Figure 1 is a counterexample. We will see later that errors in
the computed depth map for the ellipsoid can be attributed
partially to this assumption.

tion (4) to decide the depth of a pixel, rather than
relying on a solid angle model.

The basic idea of our algorithm is as follows. As
in the LZ algorithm, each pixel is associated with a
node N (z,y) in space which has the same (z,y) value
as the pixel and has a depth value z which increases
monotonically from zero as the algorithm progresses.
FEach node has an initial depth of zero. Over the course
of the algorithm, each node descends until it reaches
the surface depth z that satisfies Equation 4. At this
depth, a surface event is said to occur and the node
changes status from a free node to a surface node;
thereafter, the depth of the node remains fixed.

The algorithm maintains a priority queue of visual
and surface events, where the priority of an event is
the depth at which it occurs. For each pixel (z,y) of
the image, the highest visual or surface event of the
node N (z,y) is stored in the queue. The algorithm
proceeds by removing and processing events from the
queue in order of increasing depth. Initially, nodes
that correspond to the pixels of maximum intensity are
inserted into the queue as surface events of depth zero.
The processing of an event may cause more events to
be inserted into the queue, so the size of the queue
varies over time. When the queue becomes empty, all
nodes will have a depth z that satisfies Equation (4).

3.1 Visual Events

The skyline of a node is divided by azimuth angle
into a number of equal-size sectors. There are typi-
cally 16 sectors, each spanning § radians. The algo-
rithm approximates the skyline in each sector with a
constant elevation angle, which is the highest eleva-
tion angle of the surface nodes visible in that sector.
(We implicitly assume that each surface node spans
the entire sector.) Accuracy can be traded for speed
by increasing the number of sectors. See Figure 5.

Consider one sector of the skyline of a free node
N. As the depth of NV increases, closer surface nodes
in the sector obscure more distant surface nodes, since
surface nodes remain fixed while " descends and since
each surface node is assumed to span the whole sector.
When the surface node of highest elevation within a
sector becomes obscured, a visual event occurs and the
skyline of N undergoes a qualitative change and must
be updated (recall Figure 4).

To facilitate this update, each sector of N stores
the surface nodes that can potentially appear on the
skyline, sorted by increasing horizontal distance. The
nodes in this list form a convex chain, as shown in
Figure 6. Clearly, no node below the convex chain can
appear on the skyline since it will be obscured by a
closer node. As the depth of N increases, each node



on the convex chain appears on the skyline in turn, in
order of decreasing horizontal distance.

If a sector contains at least two surface nodes on its
convex chain, the highest visual event is computed in
a straightforward manner: Let z; be the depth of the
most distant node on the chain. Let d; be its hori-
zontal distance from N. Define z, and d, similarly for
the next—most—distant node on the chain. Then the vi-
sual event occurs at depth 23 + d2 (21 — 22)/(d2 — dy).
Each sector stores the depth of its highest visual event.

Figure 5: The skyline around a node is divided into
sectors. The skyline within each sector is approxi-
mated by a constant elevation angle, which is the high-
est elevation angle of all surface nodes in that sector.
Surface nodes are assumed to span the whole sector.
Nodes are represented with grey squares in the figure.

Figure 6: Each sector of N stores a convex chain
of nodes that can potentially appear on the skyline.
Nodes below the chain cannot appear on the skyline
and are not stored, while nodes on the chain appear on
the skyline in order of decreasing horizontal distance
as N descends. In the figure, the black nodes are on
the convex chain.

3.2 Surface Events and Normal
Estimation
A surface event occurs when a node A (z,y) reaches
a depth z that satisfies

m (1=p) I(z,y)

Inas — pI(a:,y) ’ (5)

/ N(z,y,2) - udQ =
V(z,y,2)

In this section we discuss how to determine z, given the
skyline around NV (z,y). The right side of Equation (5)
is be computed once for each (z,y). Assume, for the
moment, that we can compute the integral on the left
side for any particular value of z. Then the solution of
the equation can be determined by binary search, as
follows. Let z,,;n be a lower bound on z and let 2,42
be an upper bound. Let zmia = (Zmin + Zmaz)/2-
Evaluate the integral in Equation (5) at z;q. If this
value is greater than the value of the right side assign
Zmid O Zmin; otherwise assign 2,4 t0 Z;,q,- Continue
until the difference between z,,;, and 2., is below
some threshold (we use 107%).

We next discuss how to compute the integral on the
left side of Equation (5), given a depth z and a node
N (z,y) for which the skyline is known (recall that the
skyline in each sector of N'(z,y) is defined by the sur-
face node of greatest elevation in that sector). First,
the surface normal N(z,y, z) is estimated by consid-
ering the nodes in the 8-neighborhood of (z,y). For
each pair of neighbors that are surface nodes (that
is, their final depths are already known), we deter-
mine the plane that passes through these nodes and
the point (z,y,2). The normals of all such planes are
averaged to yield the estimate for N(z,y,2). If only
one adjacent surface node exists, we use the “most
upward pointing” normal to the line passing through
(z,y, z) and the node (that is, the normal of most neg-
ative z component). If no surface nodes exist, we use
(0,0,—1) as the normal.

Given the normal, the integral is computed by sum-
ming its value over each sector of the node. Its value
in each sector has a closed—form solution which is a
function of elevation angle. Lookup tables are used
for efficiency. Further details of the algorithm will be
presented in a subsequent paper.

4 Results

We now compare the performance of the old (LZ)
and new algorithms on several test images, each of size
100 x 100 pixels. For each image, we show a cross—
section of the real depth map and the depth maps
computed by the old and new algorithms. For the
rendered images, the albedo is 0.5 and each cross—
section is taken horizontally across row 50. For the



real image in Section 4.4, the albedo is 0.7, and two
cross sections are taken.
4.1 Hemispherical Concavity

Figure 7 shows a grey-level image of a hemispher-
ical concavity excavated from the ground. The image
has just two grey—levels (recall Section 1). Note the
smooth, accurate depth map that results from the new
algorithm, which represents depth as a continuum.

To understand why the new algorithm performs
better, consider for example the deepest point in the
concavity. The visible source is directly overhead at
this point and, thus, the surface radiance is greater
than what the solid angle model dictates. (The solid
angle model approximates N - u by a constant, 0.5).
As a result, the old (LZ) algorithm, which is based on
the solid angle model, incorrectly attributes the higher
radiance to a greater solid angle, that is, to a shallower
concavity.
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Figure 7: An analytically computed image of a spher-
ical concavity.

4.2 Ellipsoid on plane

Figure 8 shows the ellipsoid from Figure 1, now
viewed from directly above. Both algorithms fail to
correctly infer the depth of the ground; the reason
is interesting. First, both algorithms underestimate

the direct illumination of points on the ground be-
cause they mistakenly assume that the depth map
is a single—valued function of (x,y). In other words,
they assume that the ellipsoid has a curtain hanging
straight down from its edge. Since light rays from
the source pass beneath the ellipsoid, points on the
ground receive more direct illumination than either
algorithm can account for. At the same time, the al-
gorithms overestimate the radiance coming from the
dark underside of the ellipsoid (recall Figure 3). The
net result of these competing errors is clearly different
for the two algorithms.
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Figure 8: A rendered image of a ellipsoid sitting on a
plane.

4.3 Smooth depth map

Figure 9 shows the results of the algorithm on the
image of Figure 2. Observe that both algorithms un-
derestimate the depth of central hilltop. This is due to
a subtle ill-conditioning property of the shape—from—
shading—under—diffuse-lighting problem. Small differ-
ences in image intensity of the brightest points in the
image can correspond to relatively large differences in
depth.

For example, over the entire surface, the depths
range from 3 to 39 and the intensities range from 32
to 250. Pixel (z,y) = (15,4), which is a local intensity



maximum, has depth 4 and intensity 249, while pixel
(z,y) = (90,71), also a local intensity maximum, has
depth 13 and intensity 247. In this case, a 0.9% dif-
ference in intensity corresponds to a 25% difference in
depth. Such a small intensity difference is typically
lost in the image noise.

Next observe that both algorithms overestimate the
depth at the right boundary of the image. Because
there is a local intensity maximum on the right bound-
ary, both algorithms assume the surface is horizontal.
(Since both algorithms construct the depth map in
order of increasing depth, the darker pixels below the
local maximum are not processed until the local maxi-
mum is fixed. In particular, in the new algorithm, the
deeper pixels cannot contribute to the normal estima-
tion.) From the cross—section, it is clear that the nor-
mal should be pointing leftward. Because of this error,
the surface receives less light than the algorithms ex-
pect, so the algorithms infer a smaller solid angle of
the visible source and hence a greater depth.

Actual depth —
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Figure 9: Surface computed from image of Figure 2.

4.4 Real Image

Finally, we compare the old and new algorithms on
a real image. Figure 10 shows two eggs resting on a
ground plane, viewed from above by a Sony CCD video
camera. The eggs and ground were painted grey and
matte with albedo 0.7. (The albedo was measured by
comparing the image intensity of the grey background
with the intensity of a white piece of paper.) The scene
and camera were surrounded by a white sheet which
acted as a hemispheric diffuse light source. Calibrated
depth maps were obtained directly from the images
using the fact that eggs have cylindrical symmetry.
Pixel noise was reduced to one grey—level out of 255
by averaging over multiple images. A range of camera
apertures was used to verify the linearity of the sensor
response. Vignetting effects near the image boundary

were removed by dividing the image intensities by
those of a second image containing only the grey
ground.

Horizontal slices through the actual and computed
depth maps are shown for rows 36 and 75. Both al-
gorithms recovered the shape of the egg quite well.
(Errors were due in part to surface roughening, glossi-
ness, and pigmentation that arose through contact of
the eggs with other surfaces.) Observe that the new
algorithm was able to recover the height of the ground
plane more accurately than the old algorithm.
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Figure 10: A real image of two eggs resting on a
ground plane, viewed from above. Both eggs and
ground were painted grey with p = 0.7. Horizontal
slices through the actual and computed depth maps
are shown for rows 36 and 75.



4.5 Summary of Experiments

Table 1 summarizes the mean and root—mean—
square (RMS) errors for each of the images discussed
above. For each image, errors are reported for each
algorithm. Error is measured in pixel-width units.
The true depth maps were between 35 and 50 units
deep at their deepest point. The data show clearly
that the new algorithm performs better than the old
one. The improvements are modest, however, and sug-
gest that the three types of errors we have discussed —
namely, approximations in the image formation model,
poor local constraints at the image boundary, and ill-
conditioning of the problem itself — provide an ulti-
mate bound on performance.

Table 1: Error Measurements

| Scene | Algorithm || Mean Error | RMS Error |
Concavity New 1.5 1.7
LZ 7.6 6.1
Ellipsoid New -0.7 34
LZ 7.7 54
Smooth New -2.5 4.7
LZ -0.1 5.5
Two Eggs New 6.0 6.0
LZ 12.1 7.9
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