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Abstract

Pictures taken with finite aperture lenses typically have
out-of-focus regions. While such defocus blur is useful for
creating photographic effects, it can also be used for depth
estimation. In this paper, we look at different camera set-
tings for Depth from Defocus (DFD), the conditions under
which depth can be estimated unambiguously for those set-
tings and optimality of different settings in terms of lower
bound of error variance. We present results for general
camera settings, as well as two of the most widely used cam-
era settings namely, variable aperture and variable focus.
We show that for variable focus, the range of depth needs
to be larger than twice the focal length to unambiguously
estimate depth. We analytically derive the optimal aperture
ratio, and also show that there is no single optimal parame-
ter for variable focus. Furthermore we show how to choose
focus in order to minimize error variance in a particular
region of the scene.

1. Introduction

Depth from Defocus work by estimating defocus blur at

every pixel from one or more defocused images. Any fi-

nite aperture or non-pinhole camera will produce defocus.

This is more prominent when pictures are taken with long

focal length and wide aperture lenses. In such cases, when

the lens is focused on a subject, everything outside the sub-

ject’s distance is defocus blurred. This has been used by

photographers to shift the viewer’s attention or even to pro-

duce background effects like Bokeh1. From a mathematical

viewpoint, the amount of blur depends on the camera pa-

rameters namely focal length (f ), f-number (N), and focus

position, and the depth of the scene. When this relationship

is bijective, we can recover depth by measuring the defocus

blur. Pentland first proposed to estimate depth from defo-

cused images [10] in the 1980s. There is a closely related

method known as Depth from Focus (DFF) (e.g. [5, 6])

1Bokeh is the blur pattern created by bright out-of-focus scene points.

where a set of pictures are taken by changing the focus at

discrete intervals. Depth at a pixel/region is determined by

finding the focus position where contrast is highest. DFF re-

quires a large number of images and the depth inference is

a forward problem where the assigned depth is equal to the

focus distance. DFD on the other hand typically requires

one or two images and the depth is estimated by solving an

inverse problem.

There are a number of pinhole model based methods

for estimating depth from single and multiple images, e.g.

Structure from Motion (SfM), Stereo, etc. However, de-

focus blur is unavoidable because there is no true pinhole

camera. Furthermore, today’s high resolution sensors are

more sensitive to defocus blur. So if there is unavoidable

defocus blur then we might as well use it. In terms of depth

resolution Schechner and Kiryati [14] showed that there

are no inherent limitations of DFD in discriminating depth.

Compared to methods like SfM, DFD can produce a dense

depthmap with only a few images. However DFD does re-

quire careful camera calibration (e.g. focus distance and

PSF calibration) as well as very good alignment between

multiple defocused images.

For getting the most out of DFD, we need to know un-

der what conditions we can estimate depth and what cam-

era settings give us the best performance. The main contri-

butions of this paper are: 1) Finding the conditions under

which depth can be estimated unambiguously from defo-

cused images, 2) analytically deriving the lower bound of

error variance for different camera settings and, 3) experi-

mentally verifying the model using synthetic and real defo-

cused images. The paper is organized as follows. Sec. 2

gives an overview of the relevant background in DFD, dis-

cusses related works and our contributions. Sec. 3 presents

three general categories of camera parameters and derives

their operating range or limits of unambiguous depth esti-

mation. Sec. 4 investigates the theoretical lower bound of

error variance for blur, inverse depth, and depth for different

lens settings. These theoretical results are experimentally

verified in Sec. 5. Finally Sec. 6 concludes the paper with

a summary and some possible applications of our work.

2015 International Conference on 3D Vision

978-1-4673-8332-5/15 $31.00 © 2015 IEEE

DOI 

326

2015 International Conference on 3D Vision

978-1-4673-8332-5/15 $31.00 © 2015 IEEE

DOI 10.1109/3DV.2015.44

326

2015 International Conference on 3D Vision

978-1-4673-8332-5/15 $31.00 © 2015 IEEE

DOI 10.1109/3DV.2015.44

326



2. Background
In this section, we present some of the fundamental ideas

behind relative blur based Depth from Defocus that this pa-

per relies on. We start by presenting the blurred image for-

mation model followed by how a pair of defocus blurs are

related. Finally we look at modeling DFD for a pair of de-

focused images using the relative blur model.

2.1. Blurred Image Formation

An ideal pinhole camera makes a sharp projection of the

scene onto the image plane. However a finite aperture cam-

era with a thin lens can only focus at a single plane (parallel

to the sensor plane) in the scene. The amount of defocus

outside this plane depends on a number of camera parame-

ters and can be derived using the thin lens model.

Fig. 1 shows how a scene point at distance u is imaged

by a lens of focal length f and aperture diameter A. Light

rays emanating from the scene point fall on the lens and

converge at distance v on the sensor side of the lens. The

relationship between these variables is specified by the thin

lens model as:
1

u
+

1

v
=

1

f
. (1)

If the imaging sensor is at distance s from the lens then the

imaged scene point creates a circular blur pattern (the exact

shape will depend on the shape of the aperture) of radius

r as shown in the figure. The thin lens model (Eq. 1) and

similar triangles from Fig. 1 give the radius of the blur in

pixels:

σ = ρr = ρ
fs

2N
(
1

f
− 1

u
− 1

s
). (2)

In the above equation the ratio of focal length (f ) and f-

number (N ) is used instead of the aperture (i.e. A = f/N ).

The variable ρ is used to convert from physical to pixel di-

mension. In the rest of this paper we will use σ to denote

blur radius in pixels. Note that the blur can be positive or

negative depending on which side of the focus plane a scene

point resides. However for circularly symmetric aperture

the sign of the blur has no effect in the blurred image for-

mation process.

Eq. 2 shows that the blur radius is a linear function of in-

verse depth. The units of inverse depth is m−1, or diopters
(D). Figures 2a and 2b show how the radius (solid lines)

varies with distance for different optical settings (more de-

tails about the plots are in Sec. 2.2).

A blurred image is modeled as a convolution of a focused

image with a point spread function (PSF) determined by the

blur radius. If the PSF function at pixel (x, y) has radius σ
and written as h(x, y, |σ|) (assuming a circularly symmetric

PSF we can ignore the sign of the blur and use |σ|), then for

a focused image I0, the observed defocused image I is:

I(x, y) = I0(x, y) ∗ h(x, y, |σ|) (3)

Figure 1: Defocus blur formation

Ideally the PSF is a pillbox function (i.e. a cylindri-

cal shaped function) with radius σ. However, because of

diffraction and other unmodeled characteristics of the opti-

cal system, the blur kernel is often modeled as a Gaussian

with spread σG = σ/
√
2, which is what we also use in this

paper.

2.2. Linearly related defocus blurs

Given a pair of images captured using different optical

parameters, the blurs σ1 and σ2 at a corresponding pixel2

are linearly related (using Eq.1 and 2) as follows[18]:

σ2 = α σ1 + β (4)

where

α ≡ N1 f2 s2
N2 f1 s1

, β ≡ ρ
f2 s2
2N2

(
1

f2
− 1

f1
+

1

s1
− 1

s2
) . (5)

There are two common DFD configurations namely:

variable aperture (2A) and variable focus (2F). In the vari-

able aperture case, a pair of images are taken with the same

focal length (i.e. f1 = f2) and focus setting (i.e. s1 = s2)

but with different f-numbers (wlog we assume N1 > N2),

so:

α =
N1

N2
> 1, β = 0 . (6)

In the variable focus case, the focal length and f-number

are fixed (A1 = A2) and the focus setting is varied, so s1 �=
s2. If the near and far focal plane distances are u1 and u2

respectively, then for u1 < u2, we have s1 > s2 and

α =
s2
s1

< 1, β =
ρf

2N
(α− 1) < 0 . (7)

If the camera settings in each image are known, then α and

β can be estimated. Fig. 2 shows the absolute and relative

2The images are geometrically related by a magnification factor s2
s1

.

Correspondences can be found if this magnification factor is known.
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blur in the above two cases. In both cases, the problem of

Depth from Defocus is to estimate the blur σ1 (or σ2) at

each point in the image, and then estimate the depth using

the thin lens equation, i.e. Eq. (1). To estimate σ1 or σ2 at

each point, one estimates the relative blur (Eq. 13). From

Fig. 2 we can see that more than one distance can have the

same absolute and relative blur which can result in depth

ambiguity. In Sec. 3 we show the conditions under which

the relative blur uniquely determines the blurs σ1 and σ2,

and in turn depth u.

2.3. Relative Blur Model

The main objective in DFD is to estimate the blur ra-

dius at each pixel and in turn estimate depth using Eq. 2.

Many different methods were proposed for this purpose us-

ing one or more images, some of which we will review in

Sec. 2.4. For now we only consider the problem of esti-

mating depth from two defocused images using the relative

blur model. In general, the blur in corresponding regions

of two defocused images will vary with the depth and cam-

era parameters. Therefore a region in the image will either

be blurrier in one image but sharper in the other or vice

versa. For example in the variable focus example shown in

Fig. 2b, a point at 1.4D ( 0.7m) is sharper in one image

(red) and another point at 1D is sharper in the other (green).

To simplify the explanation of the relative blur model, let

us assume a fronto-parallel plane being imaged with two

different camera parameters. In this case, one of the im-

ages will be sharper (IS) and the other blurrier (IB). The

observed image can be modeled as convolution of the hy-

pothetical sharp image I0 with an appropriate PSF h and

additive noise. Therefore the observed sharper and blurrier

images are:

IS = I0 ∗ hS + nS (8)

IB = I0 ∗ hB + nB . (9)

Let hR be the relative blur which under the Gaussian

PSF assumption is the amount by which the sharper (hS)

PSF is blurred to get the blurrier (hB) PSF, that is,

hB = hS ∗ hR. (10)

Now we make a simplifying assumption that the noise in

the sharp image is negligible and let:

I0 ∗ hB ≈ IS ∗ hR (11)

= I0 ∗ hS ∗ hR + nS ∗ hR (12)

The equation holds with equality when nS = 0 and very

closely approximated as hR gets large.

Let the blur radii of the kernels hB and hS be σB and σS

respectively. The radius σR of the relative blur hR in Eq.10

is:

σR ≡
√
σ2
B − σ2

S . (13)

The relative blur estimation problem can be written as

the following optimization problem:

argmin
hR

‖IB − IS ∗ hR‖22 (14)

Eq. 14 can be solved using least squares. However, this as-

sumes we know in advance which image is the blurrier one

at each pixel. In the more general case given two defocused

images I1 and I2, we would have to decide which one to

blur and by what amount (i.e. σR). In such cases, it is more

convenient to use signed relative blur. We can choose the

sign of σR to be negative when |σ1| > |σ2| and positive

otherwise. Therefore when the sign of relative blur is nega-

tive σB = σ1 and σS = σ2 and vice-versa when the sign is

positive. Experiments for this paper were performed using

this approach.

2.4. Related Work and Our Contributions

Our emphasis in this paper is not on DFD algorithms

per se, but rather on the computational constraints on the

DFD problem that apply to any algorithm based on rela-

tive blur. Here we briefly review several DFD algorithms.

Our goal is to summarize some of the key DFD contri-

butions and, more specifically, to distinguish some of the

algorithms by aspects such as the camera configurations

used, and whether they have addressed issues like unique-

ness and lower bounds on estimates which is what our paper

is mainly about.

In the first DFD paper, Pentland [10] used a pair of very

small (almost pinhole) and large aperture images, and esti-

mated relative blur using inverse filtering in the frequency

domain. Later, Subbarao [18] relaxed the requirement of

pinhole aperture and proposed a method for more general

camera parameters. He also investigated some of the spe-

cial cases under which unambiguous depth estimates can be

obtained. Ens and Lawrence [2] proposed a more robust rel-

ative blur estimation approach in the spatial domain. In their

method they first calibrated relative blur kernels for differ-

ent depth and camera parameters, and used that for depth

estimation for arbitrary scenes with the calibrated camera

parameters. They only showed results for variable aper-

ture. Subbarao and Surya [19] proposed a spatial domain

transformation method to find the relative blur from two de-

focused images. They also looked at the requirements for

unambiguous depth estimation. Watanabe et al. [22] used

variable focus with frequency domain filtering. Their ap-

proach required the entire scene to be between the two fo-

cal planes. Favaro and Soatto [3, 4] formulated an alterna-

tive filtering model which uses orthogonal operators rather

than convolution for estimating relative blur. These orthog-

onal operators are either analytically derived or learned.

Other works have considered Variational [4], MAP-MRF

[12, 9, 8], or Linear Programming [15] based formulations.
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(a) Variable Aperture (2A)
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(b) Variable Focus (2F)
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(c) Relative Blur for 2F

Figure 2: Absolute blur |σ1| (red), |σ2| (green) and relative blur σR (dashed) from Eq. (13) versus inverse depth u−1 in

diopters (D) i.e. m−1. a) Variable Aperture (2A) configuration, where the two images have the same focal length and focused

at the same distance but different f-number, and b) Variable Focus (2F) configuration, where the two images have the same

focal length and f-number but focused at two different depths. c) Relative blur for (b) with extended range (i.e. beyond

2m−1). The blue line marks where ambiguity starts (Eq. 19).

However all of these methods include a relative blur based

term in the cost function, and the additional terms incorpo-

rate some type of smoothness priors. Compared to these

works our main contribution is categorizing different possi-

ble camera settings and understanding their operating range

or limits within which depth can be estimated unambigu-

ously. Compared to [18, 19] we do not only consider cases

that give unique solution. Most notably we present the oper-

ating range for variable focus which is widely used in prac-

tice.

In the case of optimal camera parameters for DFD, Ra-

jagopalan and Chaudhuri [11] estimated the optimal ratio

of blur between two images, which can be used to find the

optimal aperture pair. With a similar goal Zhou et al. [23]

looked at the problem of optimal coded aperture pair. Sub-

barao et al. investigated the performance of their spatial

domain transform method in [20]. Schechner and Kiryati

[13, 14] analyzed how far apart the two focal planes should

be to get reliable depth estimates. Their analysis assumes

the sharper image to be noisy. However in the relative blur

based approaches it is more appropriate to assume noise to

be in the blurrier image as the sharper image is synthetically

blurred to get the blurrier image. Our analysis considers

noise to be in the blurrier image. Shih et al. [16, 17] takes

an approach similar to Rajagopalan and Chaudhuri and de-

rives the optimal relative blur between two images from the

Cramér-Rao Lower Bound. For single image DFD, Trouvé-

Peloux et al. [21] showed a performance measure using the

Cramér-Rao Lower Bound. We use Shih et al.’s work as the

starting point of our analysis and extend it to finding opti-

mal camera parameters under different conditions. Instead

of optimizing the variance lower-bound of relative blur, we

emphasize on optimizing the variance lower-bound of blur,

inverse depth, and depth. This gives more insight into how

to choose the camera parameters and also where in the scene

to expect best performance.

3. Camera Parameters and Operating Range
In this section, we first look at three general camera con-

figurations, their special cases, and the conditions under

which the relative blur σR uniquely determines the blur val-

ues σ1 and σ2.

In Sec. 2 we saw how to model DFD using relative blur.

Figs. 2a and 2b show that different depths can both have

the same absolute and relative blur. In the case of 2A, for

a given relative blur radius there are two possible (σ1, σ2)

pairs on either side of the focal plane. For 2F, this ambigu-

ity can be resolved based on which image is more blurred

as long as the scenes are limited to one side of the critical

depth shown in Fig. 2c. Here we address the more gen-

eral question of what are the limits of unambiguous depth

estimation in relative blur based methods.

We first consider the relative blur equation (Eq. 13) in

terms of the linear relationship (Eq. 4) between two differ-

ent blurs σ1 and σ2 and obtain:

σR =
√
|(α2 − 1)σ2

1 + 2αβσ1 + β2| (15)

The term inside the absolute value is a parabola of variable

σ1 and can be considered as the signed squared relative blur.
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The parabola has a critical point at

σc
1 ≡

−αβ
α2 − 1

. (16)

To unambiguously determine depth, the set of possible blurs

needs to be restricted to one of the two sides of σc
1 in Eq. 16.

Next we look at what this means for three general camera

configurations, and their special cases.

Case 1: α �= 1 and β = 0

In this case the critical point of the parabola is at

σc
1 = 0. The corresponding point in the scene will depend

on the actual camera parameter that produces this configu-

ration. In the following we review two such cases.

Variable Aperture (2A) The variable aperture case dis-

cussed in Sec. 2.2 (Eq. 6) has been around since the very

beginning of DFD [10]. The condition σc
1 = 0 and the blur

equation Eq. 2 tell us that we need to limit depth estimation

to one side of the focal plane. This limitation is well known

in the DFD literature and requires either limiting the range

of depths or focusing the lens to infinity.

Infinity focus with variable focal length This is another

special case of β = 0 where f1 = s1 and f2 = s2. This cor-

responds to having two different focal lengths and focusing

at infinity. From Eq. 5,

α =
A2f2
A1f1

. (17)

Like variable aperture, the critical point is at σ1 = 0, which

in this case is at infinity (i.e. unique solution). Note that

when f1 = f2, this turns into variable aperture.

Case 2: α = 1 and β �= 0

When α = 1, the signed squared relative blur in Eq. 15

is linear, and therefore σc
1 =∞ (i.e. unique solution). This

condition can be achieved when N1s2f2 = N2s1f1. Sub-

barao et al. [19] used a particular instance of this configura-

tion where the apertures were fixed (i.e. f1/N1 = f2/N2),

and the focal lengths (f ) along with the sensor to lens dis-

tances (s) were varied. One can however use other config-

urations to obtain the same effect as long as β �= 0 (see

supplementary material3 for examples).

Case 3: α �= 1 and β �= 0

This configuration is less constrained than the previous

ones. In the following we consider a well known special

case.

3http://cim.mcgill.ca/˜fmannan/3dv/DFD.html

Variable Focus (2F) From Eq. 7 and Eq. 16 we have,

σc
1 =

−ρfs2
2N(s1 + s2)

. (18)

The depth (uc) corresponding to the critical point can be

found by plugging Eq. 18 back into the blur equation (Eq.

2), i.e.
1

uc
=

1

f
− 1

s1 + s2
. (19)

Eq. 19 suggests that the critical depth uc depends on the

camera parameters. For a given f , uc lies between f and

some distance greater than f that is defined by the case

when s1+s2 takes its smallest possible value. But we know

from the thin lens model that s1 + s2 > 2f . It follows that

uc can be at most 2f . In other words, as long as we are

estimating depth beyond 2f there can be no ambiguity in

depth. Fig. 2c shows an example of this critical point.

4. Relative Blur Error Analysis
In this section we consider how well relative blur and

depth (or inverse depth) can be estimated from two defo-

cused images. More specifically, which camera parame-

ters yield better estimates? Recall that in the blurred image

formation model we assumed additive noise with a known

probability distribution (Gaussian in our case). Therefore

the problem of estimating error in relative blur and depth

can be treated in the framework of statistical estimation.

Given a DFD problem how do we evaluate the performance

of the estimator? In this work we consider a minimum vari-

ance unbiased estimator [7]. For an unbiased estimator with

known probability distribution, the theoretical lower bound

of the estimator variance is given by the Cramér-Rao Lower

Bound (CRLB). This approach has been previously used in

[11, 16, 17]. We build on these works and evaluate the per-

formance under different camera configurations.

Relative blur estimation requires minimizing the objec-

tive function specified in Eq. 14. For a fronto-parallel scene

this is essentially a regression problem where we find the

radius of the blur that minimizes the error. Shih et al., in

[16, 17] analytically derived the lower bound of the vari-

ance in relative blur estimates assuming a Gaussian noise

distribution in the blurred image and negligible noise in the

sharp image. This is a reasonable assumption to make since

blurring the sharp image will result in the noise variance go-

ing down very rapidly as relative blur increases. The lower

bound of the variance of σ̂R (the .̂ operator denotes esti-

mate) that they derived for noise variance σ2
n is:

var{σ̂R} ≥ (σ2
S + σ2

R)
3

Kσ2
R

=
σ6
B

Kσ2
R

(20)

where K = f(σn, I0) depends on the original pinhole im-

age I0 (i.e. the true sharp image) and noise. Therefore,
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given a scene and noise variance, K will be a constant scal-

ing factor for the estimator variance. Also notice that the nu-

merator is the defocus radius of the blurrier image. There-

fore it is desirable to minimize the blur of the blurrier image

to obtain better estimates.

We can derive a number of results from the CRLB. First,

if we want to minimize the variance of σ̂R with respect to

relative blur σR, the optimal relative blur is (as found by

Shih et al.):

σR =
σS√
2

(21)

However in practice, we are mainly interested in minimiz-

ing the variance of depth or inverse depth estimates. For

an intuitive motivation of why variance of inverse depth is

more helpful than that of relative blur, consider how the rel-

ative blur to depth conversion differs in 2F and 2A. For the

2F case in Fig. 2b, the relative blur changes rapidly at the

intersection of the two absolute blur curves. Therefore large

variation in relative blur estimates in that region will have a

small effect in inverse depth estimates. However for the 2A

case (Fig. 2a), variation in relative blur estimate results in

a constant (actual value will depend on the camera settings)

variation in inverse depth estimate everywhere. Therefore

we should expect the variance of inverse depth (or blur and

depth) to behave differently. In addition to the lower bound

of variance 4, we want to find the optimal parameters (in this

work the combination of parameters given by α and β), or

the position (in terms of depth or inverse depth) in the scene

where error variance is lowest. In the following we derive

these relationships from first principles (see supplementary

material3 for details) and experimentally verify them. To

our knowledge this has not been previously addressed.

Using the CRLB theorem for general functions of the

estimate, we can derive the lower bound on the variance

of blur in one of the images as follows (see supplementary

material3):

var{σ̂1} ≥
(
dσ1

dσR

)2

var{σ̂R} = σ6
B

K((α2 − 1)σ1 + αβ)2
.

(22)

For inverse depth estimate 1/û, we get,

var{ 1
û
} ≥

(
d 1
u

dσ1

)2

var{σ̂1} =
(

2N1

ρf1s1

)2

var{σ̂1}
(23)

and for depth estimate û:

var{û} ≥
(
d 1
1/u

d1/u

)2

var{ 1
û
} = u4var{ 1

û
}. (24)

4In the rest of the paper we will use the term variance to refer to vari-

ance of blur, inverse depth and depth.

There are a few things to note from the above equations.

Relative blur σR and blur σ1 have non-linear relationship

and as a result the two variances have a non-linear relation-

ship. Blur and depth have a linear relationship and therefore

variance of inverse depth is a scalar multiple of variance of

blur. Finally inverse depth and depth are non-linearly re-

lated which is also the case for their variance. In the rest

of the paper, we consider optimizing α and β for blur or in-

verse depth, for the different cases discussed in the previous

section. Also, for a given set of parameters, we find the po-

sition (or inverse depth) where the lower bound of variance

is lowest.

Case 1: α �= 1 and β = 0

For this configuration we have two cases, α < 1 and

α > 1. In the first case, σ1 > σ2 and so σB = σ1. And in

the second case, σ1 < σ2 and σB = σ2 = ασ1. For these

two cases:

var{σ̂1} ≥

⎧⎪⎪⎨
⎪⎪⎩

σ4
1

K(α2 − 1)2
, α < 1

σ4
1α

6

K(α2 − 1)2
, α > 1

(25)

The optimal α for the two cases are as follows:

α =

{
0 , α < 1√
3 , α > 1

(26)

In the above equation, choosing α < 1 may result in a

smaller variance compared to the α > 1 case. However

one needs to consider how large σ1 can get when choos-

ing between the two cases. In the following we look at two

special cases.

Variable Aperture (2A) In this special case, we have

β = 0, α = N1/N2. Without loss of generality we can

choose N1 > N2. This restricts us to the second case in Eq.

25. Therefore the optimal aperture ratio is α =
√
3. The

position in the scene where lower bound of the variance is

minimized is at σB = 0 which is at the focus distance.

It is interesting to compare this result with Eq. 21. If

we are considering variable aperture then according to Eq.

21, the optimal ratio of the two apertures should be
√
3/2.

However that is not the optimal if we are minimizing the

variance of estimated blur. This ratio was also found ex-

perimentally by Chaudhuri and Rajagopalan [11, 1]. Note

that in their paper they consider the ratio of blurs, which is

equivalent to aperture ratio for variable aperture case. Fur-

thermore from their work it is unclear as to how to achieve

that ratio in general.

Infinity Focus with Variable Focal Length Depending

on the focal length and aperture both cases of Eq. 26 are
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possible. Here one can find the optimal combination of all

four parameters in Eq. 17. However one simple choice is to

set N1 = N2 and f1 > f2. In this case, we are restricted

to α < 1 and variance of the estimate improves as α → 0.

Note that as α→ 0, Eq. 25 depends on σ1. Therefore when

choosing camera parameters for α < 1 one needs to ensure

that the resulting σ1 does not get too large.

Case 2: α = 1 and β �= 0

In this case, the lower bound of the variance depends on

the specific optical parameters that are chosen. The position

where the variance lower bound is minimized is given by

Eq. 27 which will be derived below in case 3.

Case 3: α �= 1 and β �= 0

Variable Focus (2F) Using the relationship from Eq. 7

and minimizing Eq. 22 wrt α, it can be shown that optimal

α is a function of σ1 (see supplementary material). In other

words there is no single α (i.e. ratio of sensor distances)

that minimizes the variance for all depths. For a given α,

the scene depth with the lowest variance can be found at

the intersection of the two blur curves i.e. when σR = 0.

Equating the two blurs give (see supplementary material),

σ1 = −β/(α+ 1). (27)

Therefore, given an α, the depth halfway between the two

focal planes (in diopters) has the lowest variance. Note that

the lower bound of variance at this point is not zero. If we

want to find an α that minimizes the lower bound at this

point, we can do that by substituting σ1 from Eq. 27 into

the variance equations to get:

var{σ̂1} ≥
(

ρf

2N

)2
(α− 1)4

(α+ 1)6
. (28)

As α → 1, the lower bound of the variance decreases.

This implies that as the two focal planes move closer to each

other, we can expect the lower bound of error variance to

get smaller at the intersection of the two blurs. Also as α→
1, σR → 0. As a result, the negligible noise in the sharp

image assumption will not hold and the model will not be a

good approximation. In this case, we can expect the overall

variance to increase. These observations are experimentally

verified later in the paper (see Fig. 3).

5. Experimental Results
We now experimentally verify some of the results de-

rived in Sec. 4 using synthetic and real defocused images.

In both cases we use a fractal texture (1/frequency ampli-

tude spectrum). For synthetic experiments, this texture is

synthetically blurred using Gaussian PSFs. For a given

depth and a pair of camera parameters, the blur radii pair

(σ1, σ2) are determined using Eq. 2. Then for each pair the

texture is synthetically blurred and Gaussian noise is added.

Finally Eq. 14 is used to estimate the relative blur which is

then converted to inverse depth estimates.

Fig. 3a plots the Root Mean Squared Error (RMSE) for

depth range 50 cm to 5 m, for 6 different camera configu-

rations (3 variable focus, 2 variable aperture and 1 infinite

focus with variable focal length). For unbiased estimation,

the RMSE is equal to the standard deviation. Fig. 3b shows

the corresponding plots obtained using theory (with K = 1).

For experiments with real images we placed a camera

(Nikon D90 with 50 mm, f/1.8 lens) in front of an LED

Cinema Display (94.3 ppi). The object to sensor distance

(or focus mark) was between 0.61 to 1.5 m at approxi-

mately 5 cm intervals. The pre-processing pipeline involve

vignetting correction, and alignment for multifocus images.

We took images of the same fractal noise texture as in the

synthetic experiment. Variable aperture images were taken

with f/22 and f/11 with two different focus setting. Vari-

able focus images were taken with f/16 with focus 0.61 and

1.5 m. The raw images were linearized using a conversion

table provided by the camera, followed by exposure normal-

ization and vignetting correction. For variable focus experi-

ments we also aligned the images. For vignetting correction

we displayed a uniform color on the monitor and took im-

ages for every camera settings. We then fit a higher-order

polynomial model with center estimation. For alignment

we took images of a grid of disks, estimated the center of

the disks and fit an affine model that aligns the centers for

differently focused disk images. For relative blur estima-

tion, we first ensured that both images had the same mean

value by dividing by their respective mean. Then we took

201×201 sized patches and solved Eq. 14 for σR using con-

tinuous least squares. For variable focus, we specified the

sign of σR and added the constraint |σR| ≥ 0. This reduces

the errors in the derivative near σR = 0 due to discretization

and image noise. Results for the real image based experi-

ments are shown in Fig. 3c.

Fig. 3 shows that both synthetic and real experiments

produce variance curves that are consistent with the theo-

retical lower bound of inverse depth variance. For variable

aperture, best performance is at the focus region. For vari-

able focus, best performance is near σR = 0. The perfor-

mance improves at the blur intersection as the focal planes

get closer to each other up to a certain limit (e.g. 0.88D -

1.33D vs. 0.2D - 2D).

It should be noted that in the synthetic experiments we

have noise in both images unlike the simplifying assump-

tion made in theory. The effect of this noisy sharp image is

seen when the relative blur in the two images are small (i.e.

σR near 0). In this case, synthetically blurring the sharp im-

age by a small amount does not reduce the noise, and as a

result, the theory plot differs from experiment. Therefore
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Figure 3: a) The RMS errors with respect to inverse depth for synthetic experiments. b) The lower-bound theoretical variance

for (a). Note that the y-axis has arbitrary scale (because of the constant K in Eq. 20). For (a) and (b), the red, green and black

curves correspond to variable focus or 2F (e.g. 0.2 D - 2.00 D corresponds to focus distances at 5 m and 0.5 m), magenta

and cyan correspond to variable aperture or 2A, and blue is variable focal length with focus at infinity. c) Estimated variance

from real images using variable aperture (2A) and focus (2F).

Table 1: Summary of different camera configurations, range of unambiguous depth and accuracy.

Configuration σc
1 uc Opt. Params Opt. Dist.

Case 1: α �= 1 and β = 0

- Variable Aperture (2A)
0 focus dist.

α =
√
3

focus dist.
- Inf. Focus with Variable α→ 0 and σ1 small,

Focal Length or α =
√
3

Case 2: α = 1 and β �= 0 ∞ ∞ Eqs. 22, 23, 24
Intersection of blur

curves (Eq. 27)

Case 3: α �= 1 and β �= 0 Eq. 16 Eq. 2 with σc
1 Eqs. 22, 23, 24

Intersection of blur

- Variable Focus (2F) Eq. 18 > 2f curves (Eq. 27)

we should expect larger error in relative blur based methods

as |σR| gets smaller.

6. Conclusion
In this paper, we have shown under what conditions

depth can be unambiguously estimated from relative blur.

We have also analyzed the error variance for different con-

figurations and the optimal parameters (α, β) that reduce

the variance. These results can be used to compute the lower

bound of estimator variance for any given camera parame-

ters. Our findings are summarized in Table 1. The first

column shows the different configurations and some of the

special cases addressed in this paper. The second and third

columns give the critical points for unambiguous depth in

terms of blur and depth, and the last two columns give the

optimal parameters and the location where the lowest vari-

ance occurs.

The main application of this work is in finding optimal

camera parameters that reduce the error variance over a

range of depths or inverse depths. Furthermore we can find

combination of different parameters for specific scenes and

thereby allow us to improve reconstruction without taking a

large number of images like Depth from Focus.
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We would like to thank Stéphane Kaufmann for discus-

sions on an early version of this work. This work was sup-

ported by grants from the Natural Sciences and Engineering

Research Council of Canada (NSERC).

References
[1] S. Chaudhuri and A. N. Rajagopalan. Depth from defocus -

a real aperture imaging approach. Springer, 1999. 6

[2] J. Ens and P. Lawrence. An investigation of methods for

determining depth from focus. PAMI, 15(2):97–108, 1993. 3

333333333



[3] P. Favaro and S. Soatto. A geometric approach to shape from

defocus. PAMI, 27(3):406 –417, march 2005. 3

[4] P. Favaro and S. Soatto. 3-D Shape Estimation and Image
Restoration - Exploiting Defocus and Motion Blur. Springer,

2007. 3

[5] P. Grossmann. Depth from focus. Pattern Recognition Let-
ters, 5(1):63 – 69, 1987. 1

[6] S. W. Hasinoff and K. N. Kutulakos. Confocal stereo. IJCV,

81(1):82–104, 2009. 1

[7] S. Kay. Fundamentals of Statistical Signal Processing: Es-
timation Theory. Number v. 1 in Fundamentals of Statistical

Signal Processing. Prentice-Hall PTR, 1998. 5

[8] F. Li, J. Sun, J. Wang, and J. Yu. Dual-focus stereo imaging.

Journal of Electronic Imaging, 19:043009, 2010. 3

[9] V. Namboodiri, S. Chaudhuri, and S. Hadap. Regularized

depth from defocus. In ICIP, pages 1520 –1523, oct. 2008.

3

[10] A. P. Pentland. A new sense for depth of field. PAMI, 9:523–

531, July 1987. 1, 3, 5

[11] A. Rajagopalan and S. Chaudhuri. Optimal selection of cam-

era parameters for recovery of depth from defocused images.

In CVPR, pages 219 –224, jun 1997. 4, 5, 6

[12] A. Rajagopalan and S. Chaudhuri. An MRF model-based

approach to simultaneous recovery of depth and restoration

from defocused images. PAMI, 21(7):577 –589, jul 1999. 3

[13] Y. Y. Schechner and N. Kiryati. The optimal axial interval

in estimating depth from defocus. In ICCV, pages 834–838,

1999. 4

[14] Y. Y. Schechner and N. Kiryati. Depth from defocus vs.

stereo: How different really are they? IJCV, 39:141–162,

September 2000. 1, 4

[15] S. M. Seitz and S. Baker. Filter flow. In ICCV, pages 143

–150, 29 2009-oct. 2 2009. 3

[16] S.-W. Shih, P.-S. Kao, and W.-S. Guo. Error analysis and

accuracy improvement of depth from defocusing. In CVGIP,

2003. 4, 5

[17] S.-W. Shih, P.-S. Kao, and W.-S. Guo. An error bound of

relative image blur analysis. In ICPR, volume 4, pages 100–

103 Vol.4, 2004. 4, 5

[18] M. Subbarao. Parallel depth recovery by changing camera

parameters. In ICCV, pages 149–155, dec 1988. 2, 3, 4

[19] M. Subbarao and G. Surya. Depth from defocus: A spatial

domain approach. IJCV, 13(3):271–294, 1994. 3, 4, 5

[20] M. Subbarao and J.-K. Tyan. Noise sensitivity analysis of

depth-from-defocus by a spatial-domain approach. In Proc.
SPIE 3174, pages 174–187, 1997. 4
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