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Abstract—When a compact light source illuminates a horizon-
tal shiny ground plane at an oblique angle, the resulting highlight
is vertically oriented and highly elongated. We refer to such
highlights as specular streaks. Specular streaks occur commonly
on wet roadways, especially at night, for example the reflections
of street lamps or car headlights. Here we present a 3D model
of specular streaks seen by a binocular observer. We show that
specular streaks produce binocular disparities that are consistent
with 3D near-vertical columns of light beneath the roadway. We
validate this model with results on both synthetic and real images.
Specular streaks are an important problem for vision-in-bad-
weather, in particular, for autonomous driving systems or driver
assistance systems that rely on stereo to estimate scene depth.

I. INTRODUCTION

When a light source illuminates a horizontal shiny ground
surface such as a wet street, polished floor, or body of water,
it produces a specular highlight that is vertically elongated.
Examples of such vertically elongated highlights are shown in
Figure 1. We refer to such highlights as specular streaks.

Fig. 1. Examples of specular streaks. The light sources produce vertically
elongated highlights on the wet ground region.

Specular streaks have been depicted by many artists in
landscape paintings, such as in Van Gogh’s Starry Night Over
the Rhone and Monet’s Impression Sunrise. Specular streaks
have also been studied in optics; for example, the Dutch
physicist Minnaert in his classical study of light phenomena
in natural scenes (1937) referred to them as light columns[1].
Specular streaks have been discussed in computer graphics
as well. For example, it is well known that the Blinn-Phong
model correctly produces vertically elongated highlights on
the ground, whereas the Phong model does not [2], [3].

Curiously, specular streaks have never been addressed in the
computer vision literature. This is surprising since specular
streaks occur commonly in an increasingly important scenario
for computer vision, namely wet roadways especially at night.
Street lamps, traffic lights, the headlights of other vehicles,

and illuminated signs all produce specular streaks. Computer
vision systems will need to deal with specular streaks in order
to estimate depth robustly in these scenarios.

More generally, specular highlights have always been chal-
lenging for 3D reconstruction methods, especially using binoc-
ular stereo or structure from motion. The reason specular
highlights are challenging is that do not produce reliable cor-
respondences for triangulation and hence can easily produce
spurious depth estimates. We would therefore expect specular
streaks to pose a similar problems for these methods. An
important application is driver assistance systems and vision
for autonomous vehicles which may rely on binocular stereo
(among other sensors such as lidar) to estimate depth and scene
layout. We argue that for such systems to be effective, they
need to take account of the peculiar and particular phenemenon
of specular streaks.

Our main objective in this paper is to develop a basic
appearance model of specular streaks that are viewed by a
binocular observer. Specular streaks are not merely a 2D image
phenomenon. Rather they have 3d properties. Specular streaks
have binocular disparities and hence can give rise to spurious
depth estimates that are different from the ground plane. We
model the 3D properties of specular streaks, in particular their
binocular disparity and depth.

An overview of the paper is as follows. In Section II we
review some background. We review the related computer
vision problem of ’shape from specularity’; we also review
the basic geometry of specular streaks, namely how they
arise from microfacet models of glossy surfaces. The novel
contributions begin in Section III. We present a 3D model
of a specular streak from a single point light source, and we
show that such a specular streak defines a virtual light contour
below the ground plane and that this contour is near vertical.
This is the 3D version of Minnaert’s (2D) light column
mentioned above. In Section IV, we use the model to predict
the binocular disparity of points on a specular streak. We test
this binocular disparity model using a stereo pair of rendered
specular streaks. We show that the binocular disparities that are
estimated from the specular streak in stereo is approximately
constant along the streak. We also give examples of estimated
binocular disparities from a real image including specular
streaks and other vertical objects. We conclude in Sec. V.



II. PREVIOUS WORK

A. Specular streaks in single images

Specular streaks in single images can be modelled in
several ways. To our knowledge, Minnaert [1] was the first
to model specular streaks in single images. He considered a
wet horizontal ground plane with small variations in surface
normals, e.g. a water surface with small waves or a very wet
street. He derived bounds on the shape of a specular streak in
an image, namely on the visual angle defining the height and
width of a streak in an image. These bounds depended on the
maximum angular deviation (in radians) of the local surface
normal on the ground surface, namely the angle away from
the gravity direction.

An alternative and more common model of specular re-
flection that gives rise to specular streaks in single images
uses probabilities of surfaces normals, where the surface is
assumed to consist of microfacet mirrors whose normals have
some random distribution [4], [5]. Such a microfacet model
is the basis of the Blinn-Phong and other models in computer
graphics [6]. The Blinn-Phong model is often written as

IBlinn = ka + kd max(0,n · l) + ks(n · h)s (1)

where the three terms are ambient, diffuse, and specular, and
the latter produces the specular highlight. Here l is the unit
length vector in the direction of a point light source which
in the above equation is assumed to be at infinity; n is the
macroscopic surface normal which in the case of specular
streaks is the constant ground plane normal; h is the “half-
angle” vector:

h =
v + l

‖ v + l ‖
(2)

between the unit light l and unit viewer v directions. The half
angle vector h is the surface normal of the microfacet that
would produce a mirror reflection from the light source to the
viewer. (We will use the half angle vector later in our model
– see Eq. 4.) The exponent s in Eq. (1) is the shininess. It
captures the surface roughness, or spread of the distribution
of microfacet normals.

In more general model, the microfacet distribution appears
as a term within a bidirectional reflectance distribution func-
tion (BRDF) ρ(ωi, ωr) [7]. The reflected radiance Lr(ωr)
leaving an isotropic surface in direction ωr and from a point
X can be written

Lr(X, ωr) =

∫
ρ(x, ωi, ωr) Li(ωi)(n · ωi) dωi (3)

where Li(ωi) is the incident radiance arriving from direction
ωi, and ωr is a reflection direction toward the viewpoint. In this
general model, the light source does not need to be at infinity,
nor does it need to be modelled as a point. An example is
the Ward model [8]. For the isotropic reflectance case, the
Ward model can be written as the sum of a matte and glossy
(specular) term:

ρWard(ωi, ωr) =
kd
π

+
ks√

cosωi cosωr

e− tan(δ)2/α2

4πα2

where kd diffuse reflectance, ks is the overall specular re-
flectance, and the microfacet distribution is captured by the
Gaussian term where δ = acos(n · h) is the angle between
normal n and h. The constant α controls the spread of
the microfacet normals, and hence is related to the surface
roughness. Many other BRDF models for glossy surfaces have
been proposed such as the Cook and Torrance model [9] and
GGX model [10]. These models attempt to capture various
geometric and physical effects more explicitly and precisely,
namely the self-shadowing and occlusions by the microfacts
and Fresnel effects [2].

Figure 2 shows three renderings of scenes containing three
light sources each. These light sources are at depth ZL
from the viewer (units arbitrary). Figure 2 (a) and (b) use
the Blinn-Phong and Ward models respectively with a point
source approximation for each source. Figure 2 (c) uses a ray
sampling model with non-point spherical source. The surface
roughness parameters were chosen so that the three models
produce qualitatively similar specular streak effects, namely
vertically elongated highlights of similar width and length. For
the ray sampled model, a finite light source (rather than point
light source) is used, and so the specular streaks are slightly
wider. See Figure 2 caption for more details.

Fig. 2. Examples of renderings using three models: (a) Blinn-Phong, (b)
Ward, and (c) ray sampled. The horizontal field of view angle is 14 deg
and the vertical angle is 28 deg. The thin horizontal gray line in the middle
of each image indicates the horizon. The three light sources are at heights
ZL
50
, 2ZL

50
, 3ZL

50
where ZL is the depth of these sources. The viewer is at

the same height 2ZL
50

as the middle source, and so the middle source in
each plot appears on the horizon. For (a), the shinyness s was 1000 and for
(b) α = .05. For (a) and (b) a point source model is used. For (c), the light
source has finite radius ZL

250
. To more easily compare the shape of the streaks,

we scaled the intensity of the three lights (proportionally to light height)
when rendering each streak, which gave the three streaks roughly the same
maximum intensity. The rendered image intensity of the lights themselves was
clipped to the maximum intensity value along the streaks. All three models
produce roughly the same qualitative effect.

B. Shape from Specularity

Despite their common presence in natural roadway scenes
in bad weather, specular streaks have not been discussed in
computer vision. Rather, most work on specular reflection in
computer vision has addressed the case of shiny surfaces that
are smooth and compact (objects). Here we briefly review
some of this work. The classical ‘shape from specularity’



problem is to estimate the 3D surface geometry of a shiny or
mirror surface. Since our work is concerned with the binocular
appearance of specular streaks, we begin our review with
shape from specularity studies that addressed the stereo vision
problem. Blake [11] was the first to formulate this problem,
observing that a specular highlight on a convex or concave
surface defines a virtual light source behind or in front of
the surface, respectively, and so the disparity of the highlight
relative to the surface itself could provide a cue to the sign
of surface curvature [12]. A similar idea was applied to a
moving observer [13], and it was shown that quantitative shape
recovery was possible under some conditions. For example, if
an observer knows its own motion and the position of the
light source, then the observer can recover the 3D space curve
travelled by the specular highlight along the surface [13], [14].

The above arguments do not require that the specular
reflections are highlights, namely reflection of light sources.
Rather they require only a specular reflection of some pattern
that can be tracked across multiple image frames. Subsequent
works often considered curved mirrored surfaces, which yield
a deformed mirror image of the surrounding environment [15],
[16]. For the stereo (two frame) case, one can ask under what
conditions there exist matching points between the left and
right views [17], [18], For example, when is an environment
point visible in both the left and right mirror images, and
when are such matches unique? Unlike in the Lambertian case,
matching points do not necessarily lie on epipolar lines, and so
there may not be well-defined 3D virtual point for the match.
For most models of 3D shape estimation from specular motion
or disparity, the observer needs to make strong assumptions
either about the surface shape [19] or the viewing conditions,
for example that the viewer and light source are distant relative
to the size of the object[20]. Some methods typically assume
the environment that is reflected in the mirror is a known
calibration pattern, either at a fixed position [21] or unknown
position[22].

The specular streak scenario that we introduce is quite dif-
ferent from the scenarios addressed above, which all concerned
the case of a compact curved surface shape that is viewed from
a nearby position under typically very controlled conditions.
The viewing scenario for specular streaks is quite different.
They arise when a glossy ground surface is illuminated at a
high incident angle and is viewed from a large reflection angle.
In the next section, we develop a model of a specular streak
as a virtual 3D light column which is roughly vertical and
located beneath the light source.

III. SPECULAR STREAKS AS 3D LIGHT COLUMNS

In this section we examine the basic appearance phe-
nomenon, that specular streaks appear as 3D vertical light
columns. Figure 3 shows a “texture map” representation of
the specular streaks in Figure 2, namely the same image
intensities in Figure 2 are shown as a function of ground plane
coordinates (X,Z) rather than image coordinates (x, y). These

texture map images were computed using the homography [23]

(x, y)↔ (
fX

Z
,
fh

Z
)

between image and ground plane coordinate systems. Note the
specular streaks in the texture map are much more elongated
than the streaks in the image plane; specular streaks occur in
images despite perspective foreshortening, not because of it.

Since the specular streaks in the Figure 2 image are all
vertically oriented, they meet at a vanishing point at infinity,
namely in the negative y direction in the image. Similarly in
the texture map, the streaks are oriented such that their major
axes appear to pass through the origin (X,Z) = (0, 0), which
is the ground plane point at the viewer’s feet. That point is the
apex of the truncated pyramid(s) shown. These observations
are all consistent with the specular streaks being interpreted
as vertical columns in 3D. As we show next, specular streaks
are indeed geometrically consistent with 3D light columns that
are approximately vertical, located below the light source and
beneath the ground plane.

Fig. 3. Texture maps defined on the (X,Z) plane, corresponding to the
specular streak images of the ground plane regions in Fig. 2. The trapezoid
shows the region of the ground plane that is within the observer’s 14 deg
field of view and is up to the depth ZL of the light source. The four
edges correspond to the boundary of the lower halves of the reflected light
components of the images in Fig. 2. The apex of each (truncated) triangle is
the viewer XZ position (0, 0).

Let the scene contain a ground plane Y = 0 and a point
light source at position

XL = (XL, YL, ZL).

So YL is the height of the source above the ground plane. If the
ground plane were a perfectly flat mirror, then there would be
a single virtual point light source at position (XL,−YL, ZL)
namely the mirror image of the light source below the ground
plane. Specular streaks arise when the ground plane is glossy.
What can we say about the 3D virtual image of the source
in this case? Let the viewer be located at Z = 0, and at the
same XY position as the light source, so the viewer is at
XV = (XV , YV , 0). To define the specular streak, assume a
microfacet model of glossy reflectance. At each ground plane
position X = (X, 0, Z), there is a single potential microfacet
orientation h – see Eq. 2 – such that a ray from the point



source is mirror reflected to the viewer. For this X and h pair,
a virtual light position is defined by mirror-reflecting the light
vector L ≡ XL − X about the unique plane geometric that
passes through X and has normal h. The position of the virtual
light source is

Lvirtual = X + (I− 2hhT )L. (4)

So this virtual light source Lvirtual depends both on X and
on the viewing position XV (via h).

Proposition: Suppose a point source is at XL above a glossy
ground plane, and the viewer moves along the line XV (s) =
(XV + s, YV , 0). Then for each depth Z between 0 and ZL,
there is a unique virtual light source Lvirtual given by Eq. (4)
that is invariant to the observer motion. (See the Appendix for
the proof of this proposition.)

Figure 4 uses the model of Eq. (4) to compute the locus
of Lvirtual points for three different light sources (red, blue,
and green) – see caption for details. Note that the virtual
light columns are each slightly sloped, so they are not exactly
vertical.

Fig. 4. (a) A viewer and three points sources are shown in a Y Z plane
(constant X). Lvirtual point source positions are computed using Eq. ( 4).
The viewer height is ZL

10
and the three different light source heights are

ZL
20
, ZL

10
, 3ZL

20
. The plot shows the XV = XL plane. We plot only those

virtual light source positions whose corresponding h vector is less than 4 deg
away from the gravity vector (Y axis).

Figure 5 illustrates why the virtual light columns are slightly
sloped. We consider just one of the point sources (red). Three
points along the ground plane are indicated along with the
h vector of the microfacet that produces a mirror reflection
of that point source to the viewer. When the half vector h
is gravity aligned, the virtual source Lvirtual in Eq. 4 is the
mirror reflection of the point source below the ground. For
depths Z that are closer to viewer, h is slanted slightly away
from the viewer; this decreases the Z component of Lvirtual
and pushes it deeper below the ground plane. Similarly, for
depths Z that are farther from the viewer, the microfacet
h slants slightly toward the viewer, which increases the Z
component of Lvirtual; this brings the virtual point closer to
the ground plane.

A few caveats should be given about the above proposition
and the figures. First, a microfacet with suitable half angle
vector h must be present for the streak to appear, and this is

Fig. 5. The slant of the virtual light column is due to the varying slopes
of the microfacet half vectors h that mirror reflect rays from the point light
source to viewer.

certainly not guaranteed. Indeed the reason for the streak ap-
pearance is that, at most points on the ground, the probability
of the necessary half-vector h occuring is essentially 0.

Second, the proposition suggests that the locus of virtual
light points Lvirtual is a 1D curve in 3D space, namely one
point per depth Z. However, the proof of the proposition (see
Appendix) only considers those h vectors whose component
hX is 0. Other h vectors can contribute which is why specular
streaks have a finite thickness even in the ideal case of a point
light source, as Figure 2(a,b) showed.

Third, the proposition assumes a point light source. When
the light source instead has a finite size, the specular streak will
be thickened because it will be the superposition of specular
streaks that are due to the component source points, as in the
ray sampled model of Figure 2(c).

In the next section, we ask a related question: when we
render a stereo pair of specular streaks, how well do the
binocular disparities obey the model of Eq. 4? As we will see,
the model is not perfect but it captures the main qualitative
effect that the disparity (or depth) of the virtual 3D column
is approximately constant. We also show some examples of
specular streaks in real images, and we compute the binocular
disparities of specular streaks and compare them with the
disparities of other vertical objects.

IV. BINOCULAR DISPARITY ALONG A SPECULAR STREAK

From the model of Eq. 4, we expect that a specular streak
defines a 3D virtual light column at approximately the same
depth as the light source. Thus, we would expect that the
binocular disparities along a specular streak are approximately
constant, namely approximately equal to the disparity of the
light source.

Let TX be the interocular distance between two rectified
cameras which are both pointing in the Z direction. Then the
disparity in the image plane of corresponding image points for
a 3D point at depth Zl will be

disparity =
fTX
Zl

(5)

where f is the distance to the projection plane.
Figure 6 shows the binocular disparities from a specular

streak rendered in stereo using the computer graphics model
(Ward), similar to the middle specular streak in Fig. 2. For



this example, the light source was at a Z distance of 15 m
and height 1.5m above the ground, the viewer height was
1.5m, and the viewer’s interocular distances was 6.5 cm. The
values are correspond to a typical street scene that is seen by
a binocular camera.

To estimate the binocular disparity from the stereo pair
of images, we used a 1D Lucas-Kanade style least squares
method. The results are show in the black curve. We plot
one disparity value per image row, namely the estimated
disparity at the center of the streak. We also plot the disparities
computed using the theoretical model of Eq. 4, converting
from depth to disparity using Eq. 5. See gray curve. The
intersection point of the two curves corresponds to the point
where there would be a virtual point light source (mirror
reflection) in the case that the ground had a perfect mirror
reflectance rather than glossy.

There are differences between the two curves, but these
differences are very small in an absolute sense. (Note the
small range of disparities on the abscissa.) For example, the
disparity of the Lvirtual locus (blue) varies over a range of
.007 degrees over an elevation angle of nearly 9 degrees. The
takeaway from this plot is that disparity is nearly constant (but
not exactly constant) on both of these curves.

Fig. 6. Comparison of theoretical model of disparity from Eq. 4 along a
specular streak (blue) and disparities computed (black ) from a rendered stereo
image of a specular streak. The intersection point corresponds to the position
of the mirror reflection of the point source in the case that the ground surface
had been a perfect mirror. The disparity scale in this plot has been expanded
to magnify differences between the curves – see text.

Figure 7 show three examples of stereo images of rainy
night street scenes. (The first two were shown in Fig. 1.)
The images were shot with a Fujifilm FinePix Real 3D
stereo camera. The images were then converted to grey level
and histogram equalized to enhance the contrast of the non-
specular regions. The left image in each pair was shifted by
hand so that points near the center of the scene had roughly
0 disparity. A very small vertical shear correction (the same
for all three images) was also applied so that disparities were
horizontal only.

Readers who can free-fuse the stereo pairs in the left two
columns or who have access to red-cyan anaglyph glasses (and
who can experience stereopsis) will be able to perceive the
vertical columns of the specular streaks. For the analyph pairs,
the 3D vertical columns of the streaks might be more salient

if one inverts the images (and left-right swaps the red-cyan
lenses!), since then the roadways become ceiling surfaces.
Under normal viewing, our visual systems have a strong prior
to see the ground surfaces as slanted upwards (floors) and for
some viewers the streaks might be perceived as lying on the
ground rather than beneath the ground, contrary to the actual
disparity information.

left right anaglyph

Fig. 7. Stereo pairs from Fig. 1. The images have been converted to grey
level and histogram equalized. The left two images can be free-fused; the
right images requires red-cyan anaglyph glasses.

Figure 8 shows examples of stereo disparities computed
from the images of Figure 7. For each example, regions are
marked from the left image of each pairs. For each region and
for each of the rows within the region, the horizontal disparity
was estimated over a window centered on the central pixel that
row, using a version of the Lucas-Kanade method.

In Figure 8 (top), four regions are selected. The disparities
and hence depths are roughly constant within each region, and
these constants different between regions. The ‘poles’ regions
have constant depth because they are vertical, and the specular
streak regions have constant depth as per our main argument.
The ordering of these disparity constants are also roughly as
expected. The disparity of the specular streak from the car
headlight is positive since the car is in the foreground, whereas
the disparity of the specular streak from the distant street lamp
negative. (Recall that the images were shifted to put 0 disparity
at roughly the center of the scene.) The near telephone pole has
a constant disparity whose value lies between the disparities
of the two specular streaks, since the pole’s depth lies between
the car headlamp and streetlamp. The region with two poles
in the distance has the smallest disparity.

Figure 8 (middle) shows a second example, now with five
selected regions. The largest disparity region is the foreground
region containing part of a manhole cover. The disparity varies
over that region, both because the texture and because the
actual disparity varies along the ground. The disparity of the
other regions is roughly as expected, decreasing as distance
increases. There is an exception, however: we expected the



Fig. 8. Binocular disparity as a function of y position (vertical) for selected
regions. See text.

disparity of the streaks to be closer to the disparity of the
distant background pole. The reason that the disparities streaks
may be greater than expected is that the wetness of the street
varies spatially, and so the edge of the streak is partly defined
by the wet-dry boundary of puddles. Such a material boundary
is an image feature; it is located on the ground and so has the
disparity of the ground. Such boundaries evidently complicate
the appearance of specular streaks in general.

Figure 8 (bottom) shows a third example. Again, the order-
ing of the disparities corresponds to the ordering of depths in
the scene. Note that the single specular streak in the red region
is at the same y position in the image as the pole (magenta)
but its disparity is quite different, since it is corresponds to a
(virtual) vertical column below a streetlamp that is at the far
end of the scene. Finally, the other specular streaks (green)
are so far away that they have roughly the same disparity as
all distant points, specular or not.

V. CONCLUSIONS

Specular streaks are an example of “vision in bad weather”.
Previous vision-in-bad-weather research has tended to address
problems of dehazing, and rain and snow removal [24],
[25]. Specular streaks are a naturally related problem, and
they present similar challenges. In particular, specular streaks
pose challenges for important application domains such as

autonomous vehicles and driver assistance systems. Such
vision systems should be robust to all problems of vision in
bad weather, including specular streaks. Such vision systems
should detect specular streaks, and either properly interpret
them, remove [26] or ignore them. In particular, specular
streaks obviously should not be interpreted literally as vertical
columns below the ground, even though this is what their
binocular disparities indicate.

As human observers, we typically do not perceive specular
streaks as 3D vertical columns of light beneath the ground,
unless we pay attention to them. This is similar to how we do
not perceive shadows, unless we pay attention to them [27].
Our own vision systems seem to treat specular streaks for
what they are, namely long glossy highlights, and we tend to
ignore the geometric information (3D vertical columns) that
they provide. However, for computer vision systems to ignore
specular streaks in a similar way, they would need to be told to
do so, or trained to do so. One way to train computer vision
systems to do so would be to treat specular streaks as just
another type of object in a roadway to detect, along with as
pedestrians, cyclists, vehicles, sign posts, etc.. Vision systems
would then by able to ignore specular streaks, rather than
suffering any consequences from mistakes in interpretation of
what the streak is, in particular, misinterpreting the streak as
a gaping hole in the roadway ahead.

APPENDIX

Here we prove our claim in the Proposition that defines the
3D locus of a specular streak – see Eq. 4. Specifically we
show that Lvirtual is invariant to the XV coordinate of the
viewer. To show this, we first restrict ourselves to the case
that the viewer and light source share the same X coordinate,
XV = XL. Take the ground plane point (XL, 0, Z) at depth
Z between the viewer and light source. There is a unique
microfacet normal h at this point that could produce a mirror
reflection from source to viewer. This h defines a virtual light
source via Eq. 4. Moreover, this Lvirtual and h would lie
in this X = XL = XV plane. We next show that this point
Lvirtual would also be a virtual light source point if the viewer
were to move in the X direction.

Consider the plane Π that contains the above mirror re-
flection point X = (XL, 0, Z) and has normal h. This plane
Π intersects the ground plane along the constant depth line
which can be written parametrically with parameter t as
(XL + t, 0, Z). When the light rays from the point source
reflect off points on this line, according to the microfacet nor-
mal h of plane Π, these reflected rays would (1) geometrically
diverge from the virtual light source Lvirtual, and (2) these
rays would all pass through the parametric line (XV +s, YV , 0)
with parameter s, which contains the viewer position (s = 0).
It follows that if the viewer were to move along this parametric
line, then the above point Lvirtual would remain visible to
the viewer, namely the viewer would intercept rays reflected
off the microfacets with normal h on the line defined by the
intersection of Π and the ground plane. This completes the
proof.
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