Sines and cosines: the basis of the Fourier transform

We next consider an important class of functions, namely sinusoids, and their special behaviour under convolution. Take a cosine function with \(k \) cycles from \(x = 0 \) to \(x = N \), where \(k \) is an integer,

\[
\cos\left(\frac{2\pi k}{N} x\right).
\]

Note that this cosine function has the same value at \(x = N \) as at \(x = 0 \).

Suppose we were to convolve the cosine with a function \(h(x) \).

\[
h(x) \ast \cos\left(\frac{2\pi}{N} x\right) = \sum_{x'} \cos\left(\frac{2\pi}{N} (x - x')\right) h(x')
\]

Recalling that

\[
\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta
\]

we see that the right hand side is just a sum of sine and cosine functions with variable \(x \) and constant frequency \(k \), and so it can be written

\[
h(x) \ast \cos\left(\frac{2\pi}{N} x\right) = a \cos\left(\frac{2\pi}{N} kx\right) - b \sin\left(\frac{2\pi}{N} kx\right)
\]

for some \(a \) and \(b \) which depend on \(k \) and on the function \(h(x) \). Specifically,

\[
a = \sum_{x'} h(x') \cos\left(\frac{2\pi}{N} x'\right)
\]

\[
b = \sum_{x'} h(x') \sin\left(\frac{2\pi}{N} x'\right)
\]

which are just the inner products of the \(N - D \) vectors \(h(\cdot) \) with a cosine or sine of frequency \(k \), respectively.

Define angle \(\phi \) such that

\[
(\cos \phi, \sin \phi) = \frac{1}{\sqrt{a^2 + b^2}} (a, b).
\]

Then

\[
h \ast \cos\left(\frac{2\pi}{N} x\right) = \sqrt{a^2 + b^2} \left(\cos(\phi) \cos\left(\frac{2\pi}{N} kx\right) + \sin(\phi) \sin\left(\frac{2\pi}{N} kx\right)\right)
\]

\[
= \sqrt{a^2 + b^2} \cos\left(\frac{2\pi}{N} kx - \phi\right)
\]

\(\sqrt{a^2 + b^2} \) is called the amplitude and \(\phi \) is called the phase. The amplitude and phase shift depend on frequency \(k \) and on the function \(h(\cdot) \).

Quick summary: convolving a cosine with an arbitrary function \(h(x) \) gives you back a cosine of the same frequency \(k \), though possibly phase shifted in position \(x \). Exactly the same argument can be made for a sine function.

Our next task is to show how to represent any function \(I(x) \) as a sum of sines and cosines. Why would we want to do this? We just saw that sines and cosines behave very nicely under convolution,
namely convolving a sine or cosine with any function $h(x)$ always yields a (possibly shifted) sine with the same frequency, but with possible different amplitudes. This, along with the distributive law, implies that convolving $I(x)$ with any function $h(x)$ would give the same result as if we were to decompose $I(x)$ into a sum of sines and cosines, convolve each of these with $h(x)$, and then add the results together. This result is the essence of the convolution theorem which we will cover next lecture.

Before we show how to represent any function as a sum of sines and cosines, let’s review some basics of complex numbers.

Complex numbers (review)

To decompose functions into sines and cosines we are going to use complex variables. A key trick is *Euler’s equation*:

$$ e^{i\theta} = \cos \theta + i \sin \theta $$

where $i^2 = -1$. The geometric picture you should have is that $e^{i\theta}$ represents a point on the unit circle in the complex plane.

Here are some examples:

$$ e^{i 0} = 1, \quad e^{i \pi/2} = i, \quad e^{i \pi} = -1, \quad e^{i \pi/4} = \frac{1}{\sqrt{2}} (1 + i), \quad e^{i 2\pi n} = 1 \text{ for any integer } n $$

To understand what Euler’s equation means, you need to remember what e^x means for any x, namely

$$ e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots + \frac{x^j}{j!} \cdots $$

When x is an integer, you don’t need to interpret e^x in this complicated way. But if x is more general e.g. an irrational number, or a square matrix, or complex number, then you should interpret it in this way.
Now where does Euler’s equation come from? Plugging in $i\theta$ for x in the series above, we get

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots$$

Euler’s equation comes from the fact that the Taylor series expansion of $\sin \theta$ and $\cos \theta$ about $\theta = 0$ are

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots$$

and

$$\cos \theta = 1 - \frac{\theta^2}{2} + \frac{\theta^4}{4!} + \cdots$$

Euler’s equation is useful because we can apply the usual rules of multiplication, where we add exponents. (It can be shown that this follows from the power series representation of e^x).

For example, Euler’s equation provides us with familiar trigonometric identities. Consider

$$e^{i\theta_1}e^{i\theta_2} = e^{i(\theta_1 + \theta_2)} = \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)$$

But

$$e^{i\theta_1}e^{i\theta_2} = (\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2)$$

$$= (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2)$$

which gives you familiar identities for $\cos(\theta_1 + \theta_2)$ and $\sin(\theta_1 + \theta_2)$.

A few other familiar definitions: For any complex number, $c = a + bi$, the complex conjugate is defined $\overline{c} = a - bi$. The complex conjugate has the property that

$$c \overline{c} = |c|^2 = a^2 + b^2$$

In particular, $e^{-i\theta}$ is the complex conjugate of $e^{i\theta}$ and

$$e^{i\theta}e^{-i\theta} = 1.$$

The complex conjugate of c should not be confused with the inverse of c, namely the complex number c^{-1} which satisfies $cc^{-1} = 1$,

$$c^{-1} = \frac{1}{|c|} \overline{c}.$$

Finally, recall that the inner product of two N-dimensional vectors of complex numbers is defined:

$$(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^{N} \overline{u_i}v_i$$

You can check for yourself that

$$(\mathbf{u}, \mathbf{v}) = (\overline{\mathbf{v}}, \mathbf{u})$$

and, in particular,

$$(\mathbf{u}, \mathbf{u}) = \sum_{i=1}^{N} \overline{u_i}u_i = \sum_{i=1}^{N} |u_i|^2.$$

Two N-dimensional vectors (\mathbf{u}, \mathbf{v}) are orthogonal if $(\mathbf{u}, \mathbf{v}) = 0$. Two N-dimensional vectors (\mathbf{u}, \mathbf{v}) are orthonormal if they are orthogonal and each is of unit length, namely $(\mathbf{u}, \mathbf{u}) = 1$ and $(\mathbf{v}, \mathbf{v}) = 1$.

Discrete Fourier Transform

We are going to write a function $I(x)$ as a sum of shifted cosine functions

$$I(x) = \sum_{k=0}^{N-1} A(k) \cos\left(\frac{2\pi}{N} k x + \phi(k)\right). \quad (1)$$

To compute the $A(k)$ and $\phi(k)$, we define the $N \times N$ Fourier transform matrix F whose k^{th} row and x^{th} column is:

$$F_{k,x} = \cos\left(\frac{2\pi}{N} k x\right) - i \sin\left(\frac{2\pi}{N} k x\right) \equiv e^{-i \frac{2\pi}{N} k x}$$

The rows of the matrix F have a real part and an imaginary part. The real part is a sampled cosine function. The imaginary part is a sampled sine function. Note that the leftmost and rightmost column of the matrix ($x = 0$ and $x = N - 1$) are not identical. You would need to go to $x = N$ to reach the same value as at $x = 0$. But $x = N$ is not represented.

Multiplying $I(x)$ by the Fourier transform matrix F defines:

$$\hat{I}(k) \equiv F \cdot I(x). \quad (2)$$

$\hat{I}(k)$ is the discrete Fourier transform (DFT) of $I(x)$. Later I will show that

$$\hat{I}(k) = A(k) e^{i\phi(k)}$$

where $A(k)$ and $\phi(k)$ are as in Eq. (1) above.

Example 1: Impulse function

Recall

$$\delta(x) \equiv \begin{cases} 1, & x = 0 \\ 0, & \text{otherwise} \end{cases}$$

Its Fourier transform is

$$\hat{\delta}(k) = \sum_{x=0}^{N-1} \delta(x) e^{i \frac{2\pi}{N} k x}$$

$$= 1 \cdot e^{i \frac{2\pi}{N} k 0}$$

$$= 1$$
This is rather surprising. It says that we can obtain an impulse function by summing a set of cosine functions over all frequencies \(k \in 0, 1, \ldots, N - 1 \). (Note that the phase is 0, i.e. \(\phi(k) = 0 \) for all \(k \), and so there are no sine terms.) Basically, what happens is that at \(x = 0 \) all the cosine functions have the value 1, whereas at other values of \(x \) there are a range of values, some positive and some negative, and these other values cancel each other out.

To try to illustrate what is going on here, I have written a Matlab script

http://www.cim.mcgill.ca/~langer/646/MATLAB/sumOfCosines.m

which shows what happens when you add up all the cosines (top) and sines (bottom) of frequency \(k = 0, \ldots, N - 1 \) for some chosen \(N \). The final plot is shown here

http://www.cim.mcgill.ca/~langer/646/MATLAB/sumOfCosines.jpg

The example is rather subtle. The \(N \) cosine functions that are summed to give the top black continuous curve are \(\cos(\frac{2\pi}{N}kx) \) for \(k = 1, \ldots, N - 1 \). The Matlab variable \(x \) indicated on the axis goes from \(0, 1, \ldots, NM \). The extra factor \(M \) is used to “oversample” the underlying cosine function so that we can plot a continuous curve. The * points are the \(N \) samples \(x = 0, M, 2M, \ldots, (N-1)M \).

Note that the bottom plot shows the sums of the sine functions. The \(N \) sines functions cancel out at all the * sample points.

Example 2a: the “complex exponential” \(h(x) = e^{i\frac{2\pi}{N}k_0x} \)

Eventually below we will compute the Fourier transform of \(\cos(\frac{2\pi}{N}k_0x) \) for some fixed integer \(k_0 \). To do so, we will use the following result:

\[
\mathcal{F} \left(e^{i\frac{2\pi}{N}k_0x} \right) = \delta(k - k_0).
\]

That is,

\[
\sum_{x=0}^{N-1} e^{i \frac{2\pi}{N}k_0x} e^{-i \frac{2\pi}{N}kx} = \begin{cases} N, & k = k_0 \\ 0, & k \neq k_0 \end{cases}
\]

How to derive this? The case \(k = k_0 \) should be obvious since the exponent is just 0 and \(e^0 = 1 \) which we sum \(N \) times.

For the case \(k \neq k_0 \), we can use the following identity which you have all seen before. If \(\gamma \) be any number (real or complex) then

\[
(1 - \gamma) \sum_{m=0}^{N-1} \gamma^m = 1 - \gamma^N.
\]

Applying this identity gives

\[
\sum_{u=0}^{N-1} e^{i \frac{2\pi}{N}(k-k_0)x} = \frac{1 - e^{i \frac{2\pi}{N}(k-k_0)}}{1 - e^{i \frac{2\pi}{N}(k-k_0)}}.
\]

The numerator on the right hand side vanishes because \(k - k_0 \) is an integer and so \(e^{i2\pi(k-k_0)} = 1 \).
What about the denominator? Since \(k \) and \(k_0 \) are both in \(0, \ldots, N - 1 \) and since we are considering the case that \(k \neq k_0 \), we know that \(|k - k_0| < N \) and so \(e^{-i \frac{2\pi}{N}(k-k_0)} \neq 1 \). Hence the denominator does not vanish. Since the numerator vanishes but the denominator does, we can conclude

\[
\frac{1 - e^{-i \frac{2\pi}{N}(k-k_0)x}}{1 - e^{-i \frac{2\pi}{N}(k-k_0)}} = 0.
\]

This completes the derivation.

Example 2b: Fourier transform of a constant function

In the last example, call it \(h(x) = e^{i \frac{2\pi}{N} k_0 x} \), if we take \(k_0 = 0 \) then we just have a constant function, namely

\(h(x) = 1 \).

In this case,

\[
\hat{h}(k) = N\delta(k).
\]

Thus, the Fourier transform of the constant function \(h(x) = 1 \) is a delta function in the frequency domain, namely it has value \(N \) at \(k = 0 \) and has value \(0 \) for all values of \(k \) in \(1, \ldots, N - 1 \).

Examples 3 and 4: cosine and sine

We use Euler’s equation to write cosine and sine in terms of complex exponentials.

\[
\mathcal{F}\cos\left(\frac{2\pi}{N} k_0 x\right) = \sum_{x=0}^{N-1} \cos\left(\frac{2\pi}{N} k_0 x\right)e^{-i \left(\frac{2\pi}{N} k x\right)}
\]

\[
= \sum_{x=0}^{N-1} \frac{1}{2} (e^{i \frac{2\pi}{N} k_0 x} + e^{-i \frac{2\pi}{N} k_0 x})e^{-i \frac{2\pi}{N} k x}
\]

\[
= \frac{N}{2} (\delta(k_0 - k) + \delta(k_0 + k))
\]

We carry out a similar calculation for \(\mathcal{F}\sin\left(\frac{2\pi}{N} k_0 x\right) \).

\[
\mathcal{F}\sin\left(\frac{2\pi}{N} k_0 x\right) = \sum_{x=0}^{N-1} \sin\left(\frac{2\pi}{N} k_0 x\right)e^{-i \left(\frac{2\pi}{N} k x\right)}
\]

\[
= \sum_{x=0}^{N-1} \frac{1}{2i} (e^{i \frac{2\pi}{N} k_0 x} - e^{-i \frac{2\pi}{N} k_0 x})e^{-i \frac{2\pi}{N} k x}
\]

\[
= \frac{-Ni}{2} (\delta(k_0 - k) - \delta(k_0 + k))
\]

Conjugacy property of the Fourier transform

Claim: Assuming \(I(x) \) is real, which it is for images,

\[
\overline{I(k)} = \hat{I}(N - k).
\]
Note that this property does not apply to Example 2 since $I(x)$ is not real in that case.

Proof:

\[
\hat{I}(N - k) = \sum_{x=0}^{N-1} I(x)e^{-i\frac{2\pi}{N} (N-k)x} = \sum_{x=0}^{N-1} I(x)e^{i\frac{2\pi}{N} kx}e^{-i2\pi x} = \sum_{x=0}^{N-1} I(x)e^{i\frac{2\pi}{N} kx}, \text{ since } e^{2\pi x} = 1 \text{ for any integer } x
\]

\[
= \hat{I}(k)
\]

The conjugacy property clarifies one puzzling aspect of $\hat{I}(k)$ which is that it contains $2N$ values (N complex values), whereas $I(x)$ contains only N values. $\hat{I}(k)$ in fact has only N independent values (all real): once one knows $\hat{I}(k)$ for some k, one immediately knows $\hat{I}(N - k)$.

Inverse Fourier transform

The inverse of the Fourier transform is defined by a matrix consisting of the conjugate of elements of F, divided by the constant N:

\[
F^{-1} = \frac{1}{N} \overline{F}
\]

that is, I claim that

\[
\frac{1}{N} \overline{F} F
\]

is the identity matrix.

To prove that F^{-1} as defined above is indeed the inverse of F, we index the rows and columns of \overline{F} by (k_1, x) respectively and we index the rows and columns of F by (x, k_2) respectively. We need to show that for any row k_1 of \overline{F} and any column k_2 of F,

\[
\sum_{u=0}^{N-1} e^{i\frac{2\pi}{N} k_1 u} e^{-i\frac{2\pi}{N} k_2 u} = \begin{cases} N, & k_1 = k_2 \\ 0, & k_1 \neq k_2 \end{cases}
\]

But this follows immediately from Example 2 above, since we are doing the same calculation with k_1 and k_2 here as we did with k and k_0 in Example 2.