Thin lens model (camera)

\[E(x,y) = L(\theta) \frac{\pi (A')^2}{f^2} \]

Camera f-number (f-stop)

\[N = \frac{f}{A} \]

\[N = 1.4, 2, 2.8, 4, 5.6, 8, 11 \]

\[N = \sqrt{2}, \sqrt{4}, \sqrt{9}, \sqrt{16}, \sqrt{32}, \sqrt{64}, \sqrt{128} \]

Change \(f \) with \(A \) fixed

Two ways to change \(N \)

Change \(A \) with \(f \) fixed

Exposure

\[E(x,y) \times t = \text{light energy} \]

Shutter Speed (\(\frac{1}{t} \))

Typical \(t \)

... 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, ...

Typical shutter speed \(\frac{1}{t} \) (on camera display)

... 2, 4, 8, 15, 30, 60, 125, 250, 500, ...
Exposure

\[E(x,y,t) = \frac{L(x,y)}{N^2} \left(\frac{A}{e^2} \right)^4 \cdot t \]

- Increase \(N \) (by decreasing \(A \)) \(\Rightarrow \) \(E(x,y,t) \) fixed
- Decrease \(t \) (increase \(t \)) \(\Rightarrow \) \(E(x,y,t) \) fixed
- Increase \(N \) (by increasing \(t \)) \(\Rightarrow \) \(E(x,y,t) \) increased
- Decrease \(t \) (increase \(t \)) \(\Rightarrow \) \(E(x,y,t) \) size change (more complicated)

Camera Response (Time Invariant)

\[T \left(E(x,y,t) \right) \rightarrow \{ 0, 1, \ldots, 255 \} \]

- Under exposure
- 0
- 255
- \(\log \) exposure = \(\log E + \log t \)

Dynamic Range

- 255
- 0
- \(\log \) exposure = \(\log E + \log t \)

High Dynamic Range Imaging

- Given: \(T \left(E(x,y,t) \right) \rightarrow \{ 0, 1, \ldots, 255 \} \)
- Image intensities \(I_t(x,y) \)
- For many shutter speeds \(\frac{1}{t} \)

Compute

\[E(x,y,t) = T^{-1} \left(I_t(x,y) \right) \]

For each \((x,y)\) use an image such that \(0 \leq I(x,y) \leq 255 \)
Color

Radiance
}

irradiance

\(L(x, \vec{t}, \lambda) \)

\(E(x, \lambda) \)

BRDF

\(\rho(x, \text{in}, \text{out}, \lambda) \)

Image irradiance

\(E(x, y, \lambda) \)

Pixel (Bayer pattern)

\(E_{\text{RGB}}(x, y) = \int C_{\text{RGB}}(\lambda) E(x, y, \lambda) \, d\lambda \)

3 intensities per pixel