
COMP 423 lecture 8 Jan. 21, 2008

Up to now, we have looked at codes for a set of symbols in an alphabet. We have also looked
at the specific case that the alphabet is a set of integers. We will now study a few compression
techniques in which we will code both symbols as well as integers.

Move-to-front algorithm

Version 1

Suppose we are given a sequence of symbols as before, with each symbol coming from an alphabet
{A1, . . . , AN}. The move-to-front algorithm maintains a list of the N symbols in the alphabet. For
each symbol in the sequence, it encodes the position of this symbol in the list, and then modifies
the list by moving the symbol to the front of the list.

Example

Suppose N = 6. Initialize the list of symbols to be [A1, A2, A3, A4, A5, A6].

Suppose the example data sequence to be encoded starts off A3A4A1A2A2A6A2 The move-to-
front algorithm does the following:

encode updated list of symbols
[A1, A2, A3, A4, A5, A6]

C(3) [A3, A1, A2, A4, A5, A6]
C(4) [A4, A3, A1, A2, A5, A6]
C(3) [A1, A4, A3, A2, A5, A6]
C(4) [A2, A1, A4, A3, A5, A6]
C(1) [A2, A1, A4, A3, A5, A6]
C(6) [A6, A2, A1, A4, A3, A5]
C(2) [A2, A6, A1, A4, A3, A5]
: :

Thus, the encoder writes down or sends the sequence of codewords,

C(3) C(4) C(3) C(4) C(1) C(6) C(2) . . .

How can a decoder recover the original data from the sequence of codewords? It does so by
mimicking the encoder. It maintains a list of the N symbols, initializing the list in the same order
as the encoder initializes its list. Then, for each codeword C(i) that it reads, it looks at the symbol
at position i in its current list of the N symbols. This is the symbol that has been encoded. To
continue, it moves the symbol to the front of its list. [Verify for yourself that the decoding algorithm
recovers the original sequence for the example above. If you don’t understand, come and see me.]

At first glance, it may not be obvious why move-to-front should compress the sequence. The
key observation is that symbols that occur with higher probability tend to be nearer the front of the

list. Each time the symbol occurs, it is put at the front of the list. If the symbol occurs frequently,
then it won’t drop too far back in the list before it occurs again. By contrast, a symbol that occurs
rarely tends to fall relatively far back in the list between occurences, because other symbols are

1

COMP 423 lecture 8 Jan. 21, 2008

moved in front of it. So, by using shorter codewords C(i) for positions i near the front of the list
(i.e. smaller i), i.e.

λ1 ≤ λ2 ≤ λ3 ≤ . . .

we tend to use shorter codewords for frequently occuring symbols. But this is what we need to do
to achieve compression. So, in this sense, move-to-front should work.

Best case performance of move-to-front

Move to front performs best when we have a symbol that is repeated over and over. e.g.

. . . A3A3A3A3A3A3 . . .

The first time A3 occurs in this sequence, we need to encode its position in the list, but each
subsequent time, it is already at the front of the list and so it is cheap to encode. At least, it is
cheap to encode if C(1) is short.

In practice, we do not expect to have such best case sequences. But the example suggests a
general way in which move-to-front compresses well. If the sequence has certain regions in which
particular symbols occur more frequently, the algorithm takes advantage of this: it uses shorter
codewords since the more frequently occuring symbol tends to be near the front of the list.

Such variations in local frequency, i.e. clustering, does arise is real world data. For example,
if you open a randomly chosen book from the library and you see the word “fish,” then it is more
likely that the word “fish” will appear again in that particular book (or chapter, or paragraph) than
if you chose another random book (or chapter, or paragraph).

Worst case performance

What about the worst case performance? You might expect that the worst case for move-to-front
would occur for the sequence:

ANAN−1AN−2 . . . A1ANAN−1AN−2 . . . A1ANAN−1AN−2 . . . A1

The reasoning is that the symbol to be coded next would always lie at the end of the list. Hence the
average codeword length would be λ(N), which is maximal. (Note, however, that this worst case
requires that each symbol occur an equal number of times, and hence be “equally likely”. When
not all symbols are equally likely, this worst case arrangement of the symbols is impossible.)

Version 2

To analyze the worst-case performance of move-to-front, we will use a slightly different version of
the algorithm. As before, suppose we have a prefix code C for the positive integer positions in a
list of symbols. We also consider a prefix code C∗ for the symbols in the alphabet. These two codes
have nothing to do with each other.

In the new version of the algorithm, the encoder starts with an empty list. For each symbol A

in the sequence, it checks whether that symbol is in the list. If so, and if the symbol is at position
j, then the codeword C(j) is sent and the symbol is moved to the front. If the symbol is not in

2

COMP 423 lecture 8 Jan. 21, 2008

the list (i.e. it has not been seen before in the sequence), and if there are k elements in the list
currently (k ≥ 0) then the codeword C(k + 1) is sent – that is, the symbol is treated as if it were
last in the list. This new symbol is then inserted at the front of the list (i.e. moved to front), and
the code for the symbol C∗(A) is sent.

The decoder does the same thing. It begins with an empty list. Then, at any time there are k

symbols in the list, it reads the next codeword which is some C(i). If i = k+1, then this means the
next symbol in the sequence is not in the current list; so it interprets the next bits as the codeword
for this new symbol C∗(k + 1). It then inserts this new symbol at the front of the list. But if i ≤ k,
then the symbol must be in the list, namely at position i in the list, and so it looks up this symbol
in the list and moves it to the front.

Example

Suppose the example sequence to be encoded starts off A3A4A1A2A2A6A2
The move-to-front algorithm does the following. The list is initially empty.

encode updated list
empty

C(1)C∗(A3) [A3]
C(2)C∗(A4) [A4, A3]
C(3)C∗(A1) [A1, A4, A3]
C(4)C∗(A2) [A2, A1, A4, A3]
C(1) [A2, A1, A4, A3]
C(5)C∗(A6) [A6, A2, A1, A4, A3]
C(2) [A2, A6, A1, A4, A3]
: :

You should make sure that you understand how the decoder works, namely, make sure that you
can decode the sequence and get back the original example.

C(1)C∗(A3)C(2)C∗(A4)C(3)C∗(A1)C(4)C∗(A2)C(1)C(5)C∗(A6)C(2)

One advantage of this second version of the move-to-front algorithm is that the list is much
shorter in the case that the number of symbols N in our alphabet is large. For example, suppose
our alphabet is the set of words in the English dictionary. Do we really want to create a list of these
words and start moving elements to the front? No.

Worse case analysis of move-to-front (version 2)

Let us calculate an upper bound (worst case) on the total number of bits used by the C code,
i.e. the codewords that indicate positions in the move-to-front list. We ignore the number of bits
used by C∗ code which is the code used for the symbols themselves; the issue of how to encode the
individual symbols is independent of how to encode based on the frequency/pattern of occurences.
Moreover, the C∗ code is used only once for each symbol that occurs in the sequence.

Consider a sequence of n symbols which we wish to encode. Let the symbols that occur in this
sequence be denoted {A1, A2, . . . , AN}, where N ≤ n by definition. Let ni ≥ 1 be the number of

3

COMP 423 lecture 8 Jan. 21, 2008

occurences of symbol Ai. Let the times when Ai occurs be denoted ti1, t
i

2, . . . , t
i

ni
. One way to

visualize these t’s is to use an N × n matrix with values in 0 and 1. In row i and column m, we
have a 1 if and only if Ai occured at time m. The number of 1’s in row i is thus ni, and there is a
unique 1 in each column.

For the example sequence A3A4A1A2A2A6A2 . . . and assuming N = 6, the matrix of occurance
positions ti

m
would be

















0 0 1 0 0 0 0 . . .

0 0 0 1 1 0 1 . . .

1 0 0 0 0 0 0 . . .

0 1 0 0 0 0 0 . . .

0 0 0 0 0 0 0 . . .

0 0 0 0 0 1 0 . . .

















where i is row and m is column.
Let λi

tot
be the number of bits used to encode the positions of these ni occurances of Ai. There

are two key observations.

• The first time symbol Ai occurs, the list can have at most ti1 −1 elements, and so the position
encoded by move-to-front is at most ti1. This requires at most λ(ti1) bits.

• From its kth occurence to its k + 1st occurence, a symbol Ai can fall at most to position
ti
k+1

− ti
k

in the list. Thus, to encode this position requires at most λ(ti
k+1

− ti
k
) bits.

Hence,
λi

tot
≤ λ(ti1) + λ(ti2 − ti1) + λ(ti3 − ti2) + · · ·+ λ(ti

ni
− ti

ni−1
)

We next simplify this inequality using Jensen’s inequality. Suppose we have an upper bound on the
function λ(), namely a continuous non-decreasing convex function f(x) such that

λ(j) ≤ f(j)

where j is a positive integer. For example, recalling the Elias code with codeword lengths

λ(j) = 2⌊log j⌋ + 1

we could take
f(x) ≡ 2 log(x) + 1 .

We combine the two inequalities above to get a (slightly higher) upper bound for λi

tot

λi

tot
≤ f(ti1) + f(ti2 − ti1) + f(ti3 − ti2) + · · · + f(ti

ni
− ti

ni−1
)

Next, we multiply by ni

ni

and apply Jensen’s inequality. [Note that Jensen’s inequality was proven
in class for log(x) but exactly the same proof holds for any convex function f(x). In particular, see
the Appendix of lecture 5.]

λi

tot
≤ ni

1

ni

(f(ti1) + f(ti2 − ti1) + f(ti3 − ti2) + · · ·+ f(ti
ni
− ti

ni−1
))

≤ ni f(
1

ni

(ti1 + (ti2 − ti1) + (ti3 − ti2) + · · · + (ti
ni
− ti

ni−1
)))

= ni f(
ti
ni

ni

) by ′′telescoping′′

≤ ni f(
n

ni

) since ti
ni

≤ n and f() is non decreasing

4

COMP 423 lecture 8 Jan. 21, 2008

To get an upper bound on the average codeword length (for the code C), we sum up the λi

tot

over all i, then divide by the number of symbols n in the sequence,

λ =
1

n

N
∑

i=1

λi

tot
≤

N
∑

i=1

ni

n
f(

n

ni

) (1)

That is, for all sequences with alphabet Ai, i = 1, .., N and with frequencies ni, the average codeword
length will be at most this much.

For example, consider the Elias1 code. We can bound λ() by f(x) = 2 log x + 1. Thus, if we
use the Elias1 code, then the average code length satisfies:

λ ≤
N

∑

i=1

ni

n
f(

n

ni

) =
N

∑

i=1

ni

n
(2 log(

n

ni

) + 1) = 1 + 2
N

∑

i=1

ni

n
log(

n

ni

) (2)

Returning to Eq. (1), notice that, for n ≫ N , the proportion ni

n
will converge to the probability

that symbol Ai occurs at any particular element in the sequence. Thus, as n → ∞, we have

N
∑

i=1

ni

n
f(

n

ni

) →

N
∑

i=1

p(Ai) f(
1

p(Ai)
) (3)

In particular, if we use the Elias1 code, then as n → ∞ (see Eq. (2)), we have

λ ≤ 2H + 1

where H is entropy that is defined by the probabilities p(Ai).
At first glance, you might think that this is a very weak upper bound. You would hope your

coding scheme would give an average code length that is near the entropy, not twice the entropy!
However keep in mind that Eq. (1) defines a bound on the worst case, given the frequencies
n1, n2, . . . , nN . Move-to-front can perform much better than the bound of Eq. (1) e.g. if the
symbols cluster together, that is, if the occurence of Ai in any position makes it more likely that Ai

will occur at a nearby position. Even if such clustering doesn’t occur, the bound is arguably still
interesting: it holds without knowing in advance the probability of the symbols occuring!

Finally, note that if we use the Elias2 code, then using exactly the same argument, you can
show that

λ ≤ H + 2 log(H + 1) + 1.

For large H , this average code length is really not much worse than H . This is especially impressive,
given that it is the worst case performance on the average code length. In practice, there will be
clustering, which will lead to be performance.

5

