Entropy is a lower bound on average code length

Last lecture, we derived an upper bound on average code length of a Huffman code. Today we derive the lower bound.

Before doing so, we note that if $p\left(A_{i}\right)$ is a power of 2 for all $i=1 \ldots N$, then the average length of the Huffman code is less than or equal to the entropy. The reason is that

$$
\left\lceil\log \left(\frac{1}{p\left(A_{i}\right)}\right)\right\rceil=\log \left(\frac{1}{p\left(A_{i}\right)}\right)
$$

and so

$$
\lambda_{H u f f} \leq \sum_{i=1}^{N} p\left(A_{i}\right)\left\lceil\log \left(\frac{1}{p\left(A_{i}\right)}\right)\right\rceil=\sum_{i=1}^{N} p\left(A_{i}\right) \log \left(\frac{1}{p\left(A_{i}\right)}\right)=H
$$

The inequality in the previous line was proven last lecture.
You might next ask whether there is a situation in which the average codelength of a Huffman code is strictly less than the entropy. The answer is no.
Theorem 5.1 The average code length of a prefix code is greater than or equal to the entropy H.
Proof Take any prefix code. Let λ_{i} be the codeword lengths. We show that $H \leq \bar{\lambda}$.

$$
\begin{aligned}
H-\bar{\lambda} & =\sum_{i=1}^{N}\left(\log \left(\frac{1}{p\left(A_{i}\right)}\right)-\lambda_{i}\right) p\left(A_{i}\right) \\
& =\sum_{i=1}^{N}\left(\log \left(\frac{2^{-\lambda_{i}}}{p\left(A_{i}\right)}\right) p\left(A_{i}\right)\right)
\end{aligned}
$$

We apply Jensen's inequality (see below) where $a_{i}=\frac{2^{-\lambda_{i}}}{p\left(A_{i}\right)}, \quad p\left(A_{i}\right)=p_{i}$

$$
\begin{aligned}
& \leq \log \left(\sum_{i=1}^{N} \frac{2^{-\lambda_{i}}}{p\left(A_{i}\right)} p\left(A_{i}\right)\right) \\
& =\quad \log \left(\sum_{i=1}^{N} 2^{-\lambda_{i}}\right) \\
& \leq \quad \log 1, \quad \text { by Kraft inequality } \\
& =0
\end{aligned}
$$

The following result is normally stated for any real valued convex function $f(x)$, that is, any function for which

$$
(1-t) f(u)+t f(v) \leq f((1-t) u+t v) .
$$

whenever $0 \leq t \leq 1$ and $u, v \in \Re$. I will state the result for the special case $f(x)=\log x$, since that is all we will need for COMP 423.

Theorem 5.2 (Jenson's Inequality) Suppose we have a set of positive numbers $\left\{a_{1}, a_{2}, \ldots a_{N}\right\}$ and corresponding probabilities $p_{1}, p_{2}, \ldots, p_{N}$. Then,

$$
\sum_{i=1}^{N} p_{i} \log \left(a_{i}\right) \leq \log \left(\sum_{i=1}^{N} p_{i} a_{i}\right)
$$

Proof We prove it by induction.
The theorem is true for $N=2$, since $\log (x)$ is a convex function, namely

$$
p_{0} \log a_{1}+\left(1-p_{0}\right) \log a_{2} \leq \log \left(p_{0} a_{1}+\left(1-p_{0}\right) a_{2}\right)
$$

[See Appendix to these notes.]
We assume the theorem is true for $N=K$ and prove for $N=K+1$.
The trick is to define a new probability function, p_{i}^{\prime} on the first K values a_{1}, \ldots, a_{K} only, i.e. for $i \in 1, \ldots, K$, we define

$$
\begin{gathered}
p_{i}^{\prime} \equiv \frac{p_{i}}{1-p_{K+1}} \\
\sum_{i=1}^{K+1} \log \left(a_{i}\right) p_{i}=\sum_{i=1}^{K} \log \left(a_{i}\right) p_{i}+\log \left(a_{K+1}\right) p_{K+1}
\end{gathered}
$$

We wish to apply the induction step, using the p_{i}^{\prime} probabilities. Multiplying and diving by ($1-p_{K+1}$) gives

$$
\begin{aligned}
\sum_{i=1}^{K+1} \log \left(a_{i}\right) p_{i}= & \left(1-p_{K+1}\right) \sum_{i=1}^{K} \log \left(a_{i}\right) \frac{p_{i}}{1-p_{K+1}}+\log \left(a_{K+1}\right) p_{K+1} \\
& \text { and applying induction hypothesis gives } \\
\leq & \left(1-p_{K+1}\right) \log \left(\sum_{i=1}^{K} a_{i} p_{i}^{\prime}\right)+p_{K+1} \log \left(a_{K+1}\right)
\end{aligned}
$$

This has the form $(1-t) \log (u)+t \log (v)$ where $0 \leq t \leq 1$, so we can apply the $N=2$ case (see Appendix) to get:

$$
\sum_{i=1}^{K+1} \log \left(a_{i}\right) p_{i} \leq \log \left(\sum_{i=1}^{K+1} a_{i} p_{i}\right)
$$

which is what we wanted to prove.

Claim 5.1 Given an alphabet of N symbols, the uniform probability $p\left(A_{i}\right)=\frac{1}{N}$ yields maximum entropy.

Proof We first apply Jensen's inequality to the definition of entropy.

$$
H=\sum_{i=1}^{N} p\left(A_{i}\right) \log \frac{1}{p\left(A_{i}\right)} \leq \log \left(\sum_{i=1}^{N} \frac{p\left(A_{i}\right)}{p\left(A_{i}\right)}\right)=\log N
$$

Now notice that this upper bound on H is achieved by the uniform probability function. i.e.

$$
H=\sum_{i=1}^{N} \frac{1}{N} \log N=\log N
$$

Example

Use Jensen's inequality to derive an upper bound on

$$
\sum_{i=1}^{N} \log \log i
$$

Solution: Multiplying by $\frac{N}{N}=1$,

$$
\begin{aligned}
\sum_{i=1}^{N} \log \log i & =\frac{N}{N} \sum_{i=1}^{N} \log \log i \\
& =N \sum_{i=1}^{N} \frac{1}{N} \log (\log i) \\
& \leq N \log \left(\sum_{i=1}^{N} \frac{1}{N}(\log i)\right) \\
& \leq N \log \left(\log \left(\sum_{i=1}^{N} \frac{i}{N}\right)\right. \\
& =N \log \left(\log \left(\frac{N(N+1)}{2 N}\right)\right. \\
& =N \log \left(\log \left(\frac{N+1}{2}\right)\right) \\
& =N \log (\log (N+1)-1)
\end{aligned}
$$

Appendix (not covered in class - you are NOT responsible for this.)

For completely, I want to show the base case of Jensen's inequality, namely:

$$
p_{0} \log a_{1}+\left(1-p_{0}\right) \log a_{2} \leq \log \left(p_{0} a_{1}+\left(1-p_{0}\right) a_{2}\right)
$$

where $0 \leq p_{0} \leq 1$. First, note that

$$
\ln x=\ln \left(2^{\log x}\right)=\log x \ln 2 .
$$

Taking the derivative, we get

$$
\frac{d \log x}{d x}=\frac{1}{\ln 2} \frac{d \ln x}{d x}=\frac{1}{x \ln 2}
$$

and taking the derivative again, we get

$$
\frac{d^{2} \log x}{d x^{2}}=-\frac{1}{x^{2} \ln 2}<0
$$

The second derivative is always negative. (Note: $\log x$ is only defined on $x>0$.)
Rather than continuing with $\log x$, let's prove the result for any function $f(x)$ which has the property: $f^{\prime \prime}(x)<0$ for some range of x. That is, I want to prove that

$$
\begin{equation*}
p_{0} f\left(a_{1}\right)+\left(1-p_{0}\right) f\left(a_{2}\right) \leq f\left(p_{0} a_{1}+\left(1-p_{0}\right) a_{2}\right) \tag{1}
\end{equation*}
$$

Here goes: Take a Taylor expansion of $f(x)$ about some point x_{0}.

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\ldots
$$

Treat x and x_{0} as fixed. Define the function $g(u)=f^{\prime}(u)$. It is easy to show, using the intermediate value theorem of Calculus, that there exists some x^{*} between x_{0} and x such that

$$
g(x)=g\left(x_{0}\right)+g^{\prime}\left(x^{*}\right)\left(x-x_{0}\right)
$$

namely there must be some x^{*} such that $g^{\prime}\left(x^{*}\right)=\frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}$. Integrating $g(u)=f^{\prime}(u)$ from $u=x_{0}$ to $u=x$, we get

$$
f(x)-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x^{*}\right)}{2}\left(x-x_{0}\right)^{2} .
$$

But $f^{\prime \prime}\left(x^{*}\right)<0$ (since the second derivative is assumed to be negative everywhere). Thus,

$$
f(x)<f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

The next move is to define

$$
x_{0}=p_{0} a_{1}+\left(1-p_{0}\right) a_{2}
$$

and to create two inequalities by letting $x=a_{1}$ or a_{2}, respectively. This gives:

$$
\begin{aligned}
& f\left(a_{1}\right)<f\left(p_{0} a_{1}+\left(1-p_{0}\right) a_{2}\right)+f^{\prime}\left(x_{0}\right)\left(a_{1}-\left(p_{0} a_{1}+\left(1-p_{0}\right) a_{2}\right)\right) \\
& f\left(a_{2}\right)<f\left(p_{0} a_{1}+\left(1-p_{0}\right) a_{2}\right)+f^{\prime}\left(x_{0}\right)\left(a_{2}-\left(p_{0} a_{1}+\left(1-p_{0}\right) a_{2}\right)\right)
\end{aligned}
$$

where I have left the $f^{\prime}\left(x_{0}\right)$ expression as is, rather than substituting for x_{0}, since this expression will disappear below.

We're almost done. Multiply the first inequality by p_{0} and the second inequality by $\left(1-p_{0}\right)$, and add the two inequalities. This gives the result, namely Eq. (1).

