COMP 423 lecture 5 Jan. 14, 2008

Entropy is a lower bound on average code length

Last lecture, we derived an upper bound on average code length of a Huffman code. Today we
derive the lower bound.

Before doing so, we note that if p(A;) is a power of 2 for all i = 1... N, then the average length
of the Huffman code is less than or equal to the entropy. The reason is that

1 1
[log( (A,-)ﬂ = log(p(Ai)

and so

AHuff < Zp Zp ) log( (1 )) = H

The inequality in the previous line was proven last lecture.
You might next ask whether there is a situation in which the average codelength of a Huffman
code is strictly less than the entropy. The answer is no.

Theorem 5.1 The average code length of a prefiz code is greater than or equal to the entropy H.
Proof Take any prefix code. Let \; be the codeword lengths. We show that H < \.
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We apply Jensen’s inequality (see below) where a; =
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The following result is normally stated for any real valued convex function f(z), that is, any
function for which

(I=t)f(u)+tflv) < f(1—=t)u + tv).
whenever 0 < ¢ < 1 and u,v € R. I will state the result for the special case f(z) = logz, since that
is all we will need for COMP 423.

Theorem 5.2 (Jenson’s Inequality) Suppose we have a set of positive numbers {ay,as,...an}
and corresponding probabilities py, ps,...,pn. Then,

N
Z pi log(a;) < log(
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Proof We prove it by induction.
The theorem is true for N = 2, since log(z) is a convex function, namely

pologa; + (1 — pg)logas < log(poar + (1 — pg)as)

[See Appendix to these notes.]

We assume the theorem is true for N = K and prove for N = K + 1.

The trick is to define a new probability function, p on the first K values aq,...,ax only, i.e.
forie1,..., K, we define

Pi
1 = pri1

2

K+1 K
Z log(a;) pi = Z log(a;) pi + log(ax+1) Pr+1
i=1 i=1

We wish to apply the induction step, using the p; probabilities. Multiplying and diving by (1—pg 1)
gives

K+1 K

Di
> logla) pi = (1—pxs1) Y logla)———— +log(ag1)pr+1
=1 =1 1= prw

and applying induction hypothesis gives
K

< (1 =pr41) log( Z a; pi ) + pr+1 log(ak+1)
i—1

This has the form (1 — ¢)log(u) + tlog(v) where 0 <t < 1, so we can apply the N = 2 case (see
Appendix) to get:

K41 K+1
Z log(a;) pi < IOg(Z a; p;)
i=1 =1
which is what we wanted to prove. 0
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Claim 5.1 Given an alphabet of N symbols, the uniform probability p(A;) = % yields mazimum
entropy.

Proof We first apply Jensen’s inequality to the definition of entropy.

2

= log N

H:Z (A)log

Now notice that this upper bound on H is achieved by the uniform probability function. i.e.
Al
= —log N =log N
; ~ log NV = log

Example

Use Jensen’s inequality to derive an upper bound on

N
Z loglogi .
i=1

. . . . N o
Solution: Multiplying by % = 1,
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Appendix (not covered in class — you are NOT responsible for this.)
For completely, I want to show the base case of Jensen’s inequality, namely:
pologay + (1 — po)logay < log(poar + (1 — po)az)
where 0 < pg < 1. First, note that
Inz = In(2'%*) =logz In2.

Taking the derivative, we get

dlogz 1 dlnx 1
de In2 dr  zln2
and taking the derivative again, we get
d?log 1
—— = ——<0.
dzx? 221n2

The second derivative is always negative. (Note: logz is only defined on = > 0.)
Rather than continuing with logz, let’s prove the result for any function f(x) which has the
property: f”(z) < 0 for some range of x. That is, I want to prove that

pof(ar) + (1 —po)f(az) < f(poar + (1 — po)as) (1)

Here goes: Take a Taylor expansion of f(x) about some point x.

f(@) = f(zo) + f'(zo)(x — mo) + f”(QIL"o) (z — m9)® + fng!%)

Treat z and zy as fixed. Define the function g(u) = f'(u). It is easy to show, using the
intermediate value theorem of Calculus, that there exists some z* between xy and x such that

g(x) = g(xo) + g'(«")(z — xo)

namely there must be some z* such that ¢'(z*) = %ﬁ?o). Integrating g(u) = f'(u) from u = zg
to u = x, we get

(@) = Fao) = 1w — o) + T (g

But f”(z*) < 0 (since the second derivative is assumed to be negative everywhere). Thus,

f@) < f(zo) + (o) (z — o).

(LL’—SL’(])s—i‘...

The next move is to define
Lo = Poai + (1 — po)a2

and to create two inequalities by letting © = a; or as, respectively. This gives:
flar) < f(poar + (1 = po)az) + f'(x0)(ar — (poar + (1 — po)as))

flaz) < f(poar + (1 = po)az) + f'(w0)(az — (poar + (1 — po)az))
where I have left the f'(zg) expression as is, rather than substituting for z, since this expression
will disappear below.
We're almost done. Multiply the first inequality by pg and the second inequality by (1 — py),
and add the two inequalities. This gives the result, namely Eq. (1).



