Entropy is a lower bound on average code length

Last lecture, we derived an upper bound on average code length of a Huffman code. Today we derive the lower bound.

Before doing so, we note that if \(p(A_i) \) is a power of 2 for all \(i = 1 \ldots N \), then the average length of the Huffman code is less than or equal to the entropy. The reason is that

\[
\lambda_{\text{Huffman}} \leq \sum_{i=1}^{N} p(A_i) \left\lceil \log \left(\frac{1}{p(A_i)} \right) \right\rceil = \sum_{i=1}^{N} p(A_i) \log \left(\frac{1}{p(A_i)} \right) = H
\]

The inequality in the previous line was proven last lecture.

You might next ask whether there is a situation in which the average codelength of a Huffman code is strictly less than the entropy. The answer is no.

Theorem 5.1 The average code length of a prefix code is greater than or equal to the entropy \(H \).

Proof Take any prefix code. Let \(\lambda_i \) be the codeword lengths. We show that \(H \leq \bar{\lambda} \).

\[
H - \bar{\lambda} = \sum_{i=1}^{N} (\log (\frac{1}{p(A_i)}) - \lambda_i) p(A_i) = \sum_{i=1}^{N} (\log (\frac{2^{-\lambda_i}}{p(A_i)}) p(A_i))
\]

We apply Jensen’s inequality (see below) where \(a_i = \frac{2^{-\lambda_i}}{p(A_i)} \), \(p(A_i) = p_i \)

\[
\leq \log \left(\sum_{i=1}^{N} 2^{-\lambda_i} p(A_i) \right) \leq \log 1, \quad \text{by Kraft inequality}
\]

\[
= 0 \quad \square
\]

The following result is normally stated for any real valued convex function \(f(x) \), that is, any function for which

\[
(1 - t)f(u) + tf(v) \leq f((1 - t) u + t v)
\]

whenever \(0 \leq t \leq 1 \) and \(u, v \in \mathbb{R} \). I will state the result for the special case \(f(x) = \log x \), since that is all we will need for COMP 423.

Theorem 5.2 (Jensen’s Inequality) Suppose we have a set of positive numbers \(\{a_1, a_2, \ldots a_N\} \) and corresponding probabilities \(p_1, p_2, \ldots, p_N \). Then,

\[
\sum_{i=1}^{N} p_i \log(a_i) \leq \log \left(\sum_{i=1}^{N} p_i a_i \right)
\]
Proof We prove it by induction.

The theorem is true for $N = 2$, since $\log(x)$ is a convex function, namely

$$p_0 \log a_1 + (1 - p_0) \log a_2 \leq \log(p_0 a_1 + (1 - p_0)a_2)$$

[See Appendix to these notes.]

We assume the theorem is true for $N = K$ and prove for $N = K + 1$.

The trick is to define a new probability function, p'_i on the first K values a_1, \ldots, a_K only, i.e. for $i \in 1, \ldots, K$, we define

$$p'_i \equiv \frac{p_i}{1 - p_{K+1}}$$

$$\sum_{i=1}^{K+1} \log(a_i) p_i = \sum_{i=1}^{K} \log(a_i) p_i + \log(a_{K+1}) p_{K+1}$$

We wish to apply the induction step, using the p'_i probabilities. Multiplying and diving by $(1 - p_{K+1})$ gives

$$\sum_{i=1}^{K+1} \log(a_i) p_i = (1 - p_{K+1}) \sum_{i=1}^{K} \log(a_i) \frac{p_i}{1 - p_{K+1}} + \log(a_{K+1})p_{K+1}$$

and applying induction hypothesis gives

$$\leq (1 - p_{K+1}) \log\left(\sum_{i=1}^{K} a_i \ p'_i \right) + p_{K+1} \log(a_{K+1})$$

This has the form $(1 - t) \log(u) + t \log(v)$ where $0 \leq t \leq 1$, so we can apply the $N = 2$ case (see Appendix) to get:

$$\sum_{i=1}^{K+1} \log(a_i) p_i \leq \log\left(\sum_{i=1}^{K+1} a_i \ p_i \right)$$

which is what we wanted to prove. \(\square\)
Claim 5.1 Given an alphabet of N symbols, the uniform probability $p(A_i) = \frac{1}{N}$ yields maximum entropy.

Proof We first apply Jensen’s inequality to the definition of entropy.

$$H = \sum_{i=1}^{N} p(A_i) \log \frac{1}{p(A_i)} \leq \log \left(\sum_{i=1}^{N} p(A_i) \right) = \log N$$

Now notice that this upper bound on H is achieved by the uniform probability function. i.e.

$$H = \sum_{i=1}^{N} \frac{1}{N} \log N = \log N$$

Example

Use Jensen’s inequality to derive an upper bound on

$$\sum_{i=1}^{N} \log \log i$$

Solution: Multiplying by $\frac{N}{N} = 1$,

$$\sum_{i=1}^{N} \log \log i = \frac{N}{N} \sum_{i=1}^{N} \log \log i$$

$$= N \sum_{i=1}^{N} \frac{1}{N} \log (\log i)$$

$$\leq N \log \left(\sum_{i=1}^{N} \frac{1}{N} (\log i) \right)$$

$$\leq N \log \left(\sum_{i=1}^{N} \frac{i}{N} \right)$$

$$= N \log \left(\log \left(\frac{N(N+1)}{2N} \right) \right)$$

$$= N \log \left(\log \left(\frac{N+1}{2} \right) \right)$$

$$= N \log \left(\log (N+1) - 1 \right)$$
Appendix (not covered in class – you are NOT responsible for this.)

For completely, I want to show the base case of Jensen’s inequality, namely:

\[p_0 \log a_1 + (1 - p_0) \log a_2 \leq \log(p_0 a_1 + (1 - p_0) a_2) \]

where \(0 \leq p_0 \leq 1 \). First, note that

\[\ln x = \ln(2^{\log x}) = \log x \ln 2. \]

Taking the derivative, we get

\[\frac{d \log x}{dx} = \frac{1}{\ln 2} \frac{d \ln x}{dx} = \frac{1}{x \ln 2} \]

and taking the derivative again, we get

\[\frac{d^2 \log x}{dx^2} = -\frac{1}{x^2 \ln 2} < 0. \]

The second derivative is always negative. (Note: \(\log x \) is only defined on \(x > 0 \).)

Rather than continuing with \(\log x \), let’s prove the result for any function \(f(x) \) which has the property: \(f''(x) < 0 \) for some range of \(x \). That is, I want to prove that

\[p_0 f(a_1) + (1 - p_0) f(a_2) \leq f(p_0 a_1 + (1 - p_0) a_2) \]

(1)

Here goes: Take a Taylor expansion of \(f(x) \) about some point \(x_0 \).

\[f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2}(x-x_0)^2 + \frac{f'''(x_0)}{3!}(x-x_0)^3 + \ldots \]

Treat \(x \) and \(x_0 \) as fixed. Define the function \(g(u) = f'(u) \). It is easy to show, using the intermediate value theorem of Calculus, that there exists some \(x^* \) between \(x_0 \) and \(x \) such that

\[g(x) = g(x_0) + g'(x^*)(x-x_0) \]

namely there must be some \(x^* \) such that \(g'(x^*) = \frac{g(x) - g(x_0)}{x-x_0} \). Integrating \(g(u) = f'(u) \) from \(u = x_0 \) to \(u = x \), we get

\[f(x) - f(x_0) = f'(x_0)(x-x_0) + \frac{f''(x^*)}{2}(x-x_0)^2. \]

But \(f''(x^*) < 0 \) (since the second derivative is assumed to be negative everywhere). Thus,

\[f(x) < f(x_0) + f'(x_0)(x-x_0). \]

The next move is to define

\[x_0 = p_0 a_1 + (1 - p_0) a_2 \]

and to create two inequalities by letting \(x = a_1 \) or \(a_2 \), respectively. This gives:

\[f(a_1) < f(p_0 a_1 + (1 - p_0) a_2) + f'(x_0)(a_1 - (p_0 a_1 + (1 - p_0) a_2)) \]

\[f(a_2) < f(p_0 a_1 + (1 - p_0) a_2) + f'(x_0)(a_2 - (p_0 a_1 + (1 - p_0) a_2)) \]

where I have left the \(f'(x_0) \) expression as is, rather than substituting for \(x_0 \), since this expression will disappear below.

We’re almost done. Multiply the first inequality by \(p_0 \) and the second inequality by \((1 - p_0) \), and add the two inequalities. This gives the result, namely Eq. (1).