
COMP 423 lecture 5 Jan. 14, 2008

Entropy is a lower bound on average code length

Last lecture, we derived an upper bound on average code length of a Huffman code. Today we
derive the lower bound.

Before doing so, we note that if p(Ai) is a power of 2 for all i = 1 . . .N , then the average length
of the Huffman code is less than or equal to the entropy. The reason is that

⌈log(
1

p(Ai)
)⌉ = log(

1

p(Ai)
)

and so

λHuff ≤

N∑

i=1

p(Ai) ⌈log(
1

p(Ai)
)⌉ =

N∑

i=1

p(Ai) log(
1

p(Ai)
) = H

The inequality in the previous line was proven last lecture.
You might next ask whether there is a situation in which the average codelength of a Huffman

code is strictly less than the entropy. The answer is no.

Theorem 5.1 The average code length of a prefix code is greater than or equal to the entropy H.

Proof Take any prefix code. Let λi be the codeword lengths. We show that H ≤ λ.

H − λ =
N∑

i=1

(log(
1

p(Ai)
) − λi)p(Ai)

=
N∑

i=1

(log (
2−λi

p(Ai)
) p(Ai))

We apply Jensen’s inequality (see below) where ai =
2−λi

p(Ai)
, p(Ai) = pi

≤ log (

N∑

i=1

2−λi

p(Ai)
p(Ai) )

= log (
N∑

i=1

2−λi )

≤ log 1, by Kraft inequality

= 0 �

The following result is normally stated for any real valued convex function f(x), that is, any
function for which

(1 − t)f(u) + tf(v) ≤ f( (1 − t) u + t v ) .

whenever 0 ≤ t ≤ 1 and u, v ∈ ℜ. I will state the result for the special case f(x) = log x, since that
is all we will need for COMP 423.

Theorem 5.2 (Jenson’s Inequality) Suppose we have a set of positive numbers {a1, a2, . . . aN}
and corresponding probabilities p1, p2, . . . , pN . Then,

N∑

i=1

pi log(ai) ≤ log(
N∑

i=1

pi ai)
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convex function log x

Proof We prove it by induction.
The theorem is true for N = 2, since log(x) is a convex function, namely

p0 log a1 + (1 − p0) log a2 ≤ log(p0a1 + (1 − p0)a2)

[See Appendix to these notes.]
We assume the theorem is true for N = K and prove for N = K + 1.
The trick is to define a new probability function, p′i on the first K values a1, . . . , aK only, i.e.

for i ∈ 1, . . . , K, we define

p′i ≡
pi

1 − pK+1

K+1∑

i=1

log(ai) pi =

K∑

i=1

log(ai) pi + log(aK+1) pK+1

We wish to apply the induction step, using the p′i probabilities. Multiplying and diving by (1−pK+1)
gives

K+1∑

i=1

log(ai) pi = (1 − pK+1)

K∑

i=1

log(ai)
pi

1 − pK+1
+ log(aK+1)pK+1

and applying induction hypothesis gives

≤ (1 − pK+1) log(

K∑

i=1

ai p′i ) + pK+1 log(aK+1)

This has the form (1 − t) log(u) + t log(v) where 0 ≤ t ≤ 1, so we can apply the N = 2 case (see
Appendix) to get:

K+1∑

i=1

log(ai) pi ≤ log(
K+1∑

i=1

ai pi)

which is what we wanted to prove. �
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Claim 5.1 Given an alphabet of N symbols, the uniform probability p(Ai) = 1
N

yields maximum

entropy.

Proof We first apply Jensen’s inequality to the definition of entropy.

H =

N∑

i=1

p(Ai) log
1

p(Ai)
≤ log(

N∑

i=1

p(Ai)

p(Ai)
) = log N

Now notice that this upper bound on H is achieved by the uniform probability function. i.e.

H =
N∑

i=1

1

N
log N = log N

Example

Use Jensen’s inequality to derive an upper bound on

N∑

i=1

log log i .

Solution: Multiplying by N
N

= 1,

N∑

i=1

log log i =
N

N

N∑

i=1

log log i

= N

N∑

i=1

1

N
log(log i)

≤ N log(

N∑

i=1

1

N
(log i))

≤ N log(log(
N∑

i=1

i

N
)

= N log(log(
N(N + 1)

2N
)

= N log(log(
N + 1

2
))

= N log(log(N + 1) − 1)

3



COMP 423 lecture 5 Jan. 14, 2008

Appendix (not covered in class – you are NOT responsible for this.)

For completely, I want to show the base case of Jensen’s inequality, namely:

p0 log a1 + (1 − p0) log a2 ≤ log(p0a1 + (1 − p0)a2)

where 0 ≤ p0 ≤ 1. First, note that

ln x = ln(2log x) = log x ln 2.

Taking the derivative, we get
d log x

dx
=

1

ln 2

d ln x

dx
=

1

x ln 2
and taking the derivative again, we get

d2 log x

dx2
= −

1

x2 ln 2
< 0.

The second derivative is always negative. (Note: log x is only defined on x > 0.)
Rather than continuing with log x, let’s prove the result for any function f(x) which has the

property: f ′′(x) < 0 for some range of x. That is, I want to prove that

p0f(a1) + (1 − p0)f(a2) ≤ f(p0a1 + (1 − p0)a2) (1)

Here goes: Take a Taylor expansion of f(x) about some point x0.

f(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)

2 +
f ′′′(x0)

3!
(x − x0)

3 + . . .

Treat x and x0 as fixed. Define the function g(u) = f ′(u). It is easy to show, using the
intermediate value theorem of Calculus, that there exists some x∗ between x0 and x such that

g(x) = g(x0) + g′(x∗)(x − x0)

namely there must be some x∗ such that g′(x∗) = g(x)−g(x0)
x−x0

. Integrating g(u) = f ′(u) from u = x0

to u = x, we get

f(x) − f(x0) = f ′(x0)(x − x0) +
f ′′(x∗)

2
(x − x0)

2 .

But f ′′(x∗) < 0 (since the second derivative is assumed to be negative everywhere). Thus,

f(x) < f(x0) + f ′(x0)(x − x0).

The next move is to define
x0 = p0a1 + (1 − p0)a2

and to create two inequalities by letting x = a1 or a2, respectively. This gives:

f(a1) < f(p0a1 + (1 − p0)a2) + f ′(x0)(a1 − (p0a1 + (1 − p0)a2))

f(a2) < f(p0a1 + (1 − p0)a2) + f ′(x0)(a2 − (p0a1 + (1 − p0)a2))

where I have left the f ′(x0) expression as is, rather than substituting for x0, since this expression
will disappear below.

We’re almost done. Multiply the first inequality by p0 and the second inequality by (1 − p0),
and add the two inequalities. This gives the result, namely Eq. (1).
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