
COMP 423 lecture 3 Jan. 9, 2008

Today we will look at a method for constructing an optimal prefix code, called Huffman coding.
To motivate this method, let’s continue on with the ideas from the end of last class.

Given any alphabet of Ai’s and probabilities p(Ai), we can renumber these symbols in the
alphabet in terms of their relative probabilities and relative codeword lengths. Once we do that,
we have the following property:

Lemma 3.1 Suppose we have an optimal prefix code. (Recall that it is non-unique.) Further,
suppose the symbols are numbered such that

p(A1) ≥ p(A2) ≥ p(A3) · · · ≥ p(AN−1) ≥ p(AN) > 0. (1)

Then there exists an optimal prefix code C whose codeword lengths satisfy

λ1 ≤ λ2 ≤ · · · ≤ λN−1 ≤ λN (2)

Proof From last class, we know that such an ordering on the λ’s automatically holds when the
inequality on p(Ai) and p(Aj) is strict. Thus, the only concern is what to do when p(Ai) = p(Aj)
for some i < j, but λi > λj . In this case, we consider a new optimal prefix code, by swapping
codewords C(Ai) and C(Aj). i.e. since the two symbols have the same probability, swapping their
codewords does not change the average code length, and so the new code is also optimal. But it
would ensure λi < λj, satisfying Eq. (2).

Similarly, if there are more than two symbols with equal probability, then we swap the codewords
of all these symbols, such that we ensure the desired ordering. �

Lemma 3.2 For any optimal prefix code whose symbols satisfy Eqs. (1) and (2), it must be that
λN−1 = λN .

Proof We already know that λN−1 ≤ λN . If the inequality is strict (λN−1 < λN) then λi < λN for
all i < N because of Eq. (2). But then leaf AN would have no sibling, contradicting a result from
last class. �

Lemma 3.3 Given any optimal prefix code C whose symbols are numbered according to Eq. (1),
there exists an optimal prefix code C whose codeword lengths are ordered

λ1 ≤ λ2 ≤ · · · ≤ λN−1 ≤ λN . (3)

and whose code is such that C(AN) and C(AN−1) are identical except for the last bit. That is, they
are siblings in the binary tree representation of the code.

Proof: Take any optimal prefix code. Both AN−1 and AN must have siblings, as we saw last class.
If AN−1 and AN are already siblings, then the proof is done. Otherwise, observe that AN−1, AN ,
and their siblings all have the same codeword length. So, swap C(AN) with the codeword of the
sibling of AN−1. This does not change the average code length, but it does make AN−1 and AN

siblings. Thus, if the original code was an optimal prefix code, then the new code must be optimal
as well. �

1

COMP 423 lecture 3 Jan. 9, 2008

Huffman coding

The lemmas give us the following recursive algorithm (due to David Huffman in 1952) for building
an optimal prefix code, given an alphabet and an probability function p() defined on the alphabet.

Algorithm (recursive): Make a Huffman code on an alphabet A1, . . . , AN

1.) Re-number symbols so that p(A1) ≥ p(A2) ≥ · · · ≥ p(AN)
2.) Merge AN−1 and AN into a new symbol A∗, such that p(A∗) = p(AN−1) + p(AN)
3.) Make a Huffman code C∗ on the alphabet of N − 1 symbols {A1, A2, . . . , AN−2, A

∗ }
4.) Define a code C for the N symbol alphabet, based on the code C∗ for the N − 1 symbol

alphabet, such that:

C(AN−1) = C∗(A∗)0, C(AN) = C∗(A∗)1, C(Ai) = C∗(Ai) for i ≤ N − 2.

Note, when we merge the symbols A∗ might have higher probability than AN−2. So, the ordering
of decreasing probability no longer necessarily holds.

Example of constructing a Huffman code

p(A1) = .25

p(A2) = .2

p(A3) = .4

p(A4) = .15

To make the Huffman code, I like to by write an initial list of the symbols, from highest to lowest
probability. (I find I make fewer careless mistakes when the symbols are ordered by probability at
the initial stage. Note that I don’t re-number the symbols. I merely order them.)

symbol p()

A3 .4
A1 .25
A2 .2
A4 .15

We begin by merging A2 and A4 to get A2,4, and we add this symbol to the list, putting an X beside
A2 and A4, to indicate that we will not consider them further.

symbol p()

A3 .4
A1 .25
A2 .2 X
A4 .15 X
A2,4 .35

2

COMP 423 lecture 3 Jan. 9, 2008

A2 A4

Then, we merge A1 and A2,4 to get A1,2,4, and we add this symbol to the list, putting an X beside
A1 and A2,4.

symbol p()

A3 .4
A1 .35 X
A2 .15 X
A4 .1 X
A2,4 .25 X
A1,2,4 .6

This gives giving us the tree shown on the left. Finally, we merge A1,2,4 and A3 to get the tree
shown on the right.

A1

A2 A4

A1

A2 A4

A3

This gives us the Huffman code:

C(A1) = 11

C(A2) = 100

C(A3) = 0

C(A4) = 101

Note that this is not the only Huffman code we could have constructed. When merging two nodes
in the tree, we chose which to put in the left child and which to put in the right child. These
decisions affect the code, but they do not affect the code lengths.

Another choice we may sometimes have is which nodes to merge. This choice arises when there
are more than two symbols that have the lowest probability. An example in which this ambiguous
choice of symbols arises both at the beginning of the algorithm and at an intermediate step is the

3

COMP 423 lecture 3 Jan. 9, 2008

following (check it out for yourself):

p(A1) = .1

p(A2) = .3

p(A3) = .2

p(A4) = .1

p(A5) = .2

p(A6) = .1

We finish this lecture by proving that the Huffman code indeed yields an optimal prefix code.

Theorem 3.1 For any set of N symbols and probabilities p(), the Huffman code is an optimal prefix
code.

Proof We prove the theorem by induction on N . That is, we prove it for N = 2. Then we show
that if the theorem is true for N = K, it must also be true for N = K + 1.

The case of N = 2 symbols in the alphabet is trivial since each codeword must have length at
least one, and so C(A1) = 0 and C(A2) = 1 must be optimal.

To prove the induction step, suppose we have an alphabet of K + 1 symbols and we have
renumbered them from highest to lowest probability. The first step of the Huffman coding algorithm,
we merge nodes AK and AK+1 into a new node A∗, so that AK and AK+1 are siblings in our Huffman
code. We then continue by Huffman coding the reduced alphabet {A1, A2, . . . , AK−1, A

∗}. Let λi

denote the codewords lengths of the Huffman code on {A1, A2, . . . , AK−1, AK , AK+1.} Note that
λK = λK+1 since AK and AK+1 are assumed to be siblings. Also note p(A∗) = p(AK) + p(AK+1).

The average code length of the Huffman code is:

K+1∑

i=1

p(Ai) λi =
K−1∑

i=1

p(Ai) λi + (p(AK) + p(AK+1)) λK

=

K−1∑

i=1

p(Ai) λi + p(A∗) λK ,

= {

K−1∑

i=1

p(Ai) λi + p(A∗) (λK − 1) } + p(A∗)

The terms between the curly brackets on the right side is the average code length of the Huffman
code on the reduced alphabet {A1, A2, . . . , AK−1, A

∗}.
Now we apply the induction step. We assume that the Huffman code is an optimal prefix code

for the reduced alphabet (N symbols). Therefore, we can replace the above terms between curly
brackets as follows:

K+1∑

i=1

p(Ai) λi ≤ {
K−1∑

i=1

p(Ai) λ′

i + p(A∗) λ′

K } + p(A∗)

where λ′

i are the codelengths of any other prefix code C ′ on the reduced K symbol alphabet
{A1, A2, . . . , AK−1, A

∗}. That is, by the induction hypothesis, the statement of the theorem is
true for an alphabet of N = K symbols.

4

COMP 423 lecture 3 Jan. 9, 2008

To show the statement holds for N = K + 1, we note that right side of the last line above is
just the average code length of any prefix code on the K + 1 symbols, such that the codewords of
AK and AK+1 differ only their last bit. To see this, note:

p(A∗) λ′

K + p(A∗) = p(A∗)(λ′

K + 1) = p(AK)(λ′

K + 1) + p(AK+1)(λ′

K + 1)

But from Lemma 3.3, there is an optimal prefix code on the K +1 symbols such that the codewords
of AK and AK+1 differ only in their last bit. Hence, the average length of the Huffman code on
K + 1 symbols is less than or equal to the average length of some optimal prefix code. Hence the
Huffman code must itself be optimal. �

5

