
COMP 273 Winter 2012 21 - memory mapped I/O, polling, DMA Mar. 29, 2012

This lecture we will look at several methods for sending data between an I/O device and either
main memory or the CPU. (Recall that we are considering the hard disk to be an I/O device.)

Programmed I/O: isolated vs. memory-mapped

When we discussed physical addresses of memory, we considered main memory and the hard disk.
The problem of indexing physical addresses is more general that that, though. Although I/O
controllers for the keyboard, mouse, printer, monitor are not memory devices per se, they do have
registers and local memories that need to be addressed too.

From the perspective of assembly language programming, there are two distinct methods for
addressing an I/O device.

One method, which is called isolated I/O, is to have special instructions for I/O operations. For
example, you might have an assembly languages instructions input or output, or various versions
of these instructions for different devices. These instructions might have arguments such as register
numbers of offsets that allow for more specificity and power.

A second (and more interesting) method by which an assembly language program can address an
I/O device is called memory mapped I/O. With memory-mapped I/O, the addresses of the registers
and/or memory in each I/O device are in a dedicated region of the kernel’s virtual address space.
This allows the same instructions to be used for I/O as are used for reading from and writing to
memory, e.g. in MIPS you use lw and sw. The advantage of memory-mapped I/O is that it keeps
the set of instructions small. This is, as you know, one of the design goals of MIPS i.e. reduced
instruction set computer (RISC).

[ASIDE: You have used syscall to do I/O in MARS. syscall is a real MIPS instruction. It
causes your program to branch to the kernel. The appropriate exception handler is then run, based
on the code number of the syscall. (You don’t get to see the exception handler when you use
the MARS simulator.) Note that the syscall instruction itself is neither isolated, nor memory
mapped. All this instruction does is jump to the kernel. What happens in the kernel determines
whether an isolated or memory-mapped scheme is used.]

SPIM does allow some tools for programming the kernel, so let’s briefly consider memory mapped
I/O in SPIM.1 There is only one input device (keyboard) and one output device (display). Both the
input and output device each have two registers. The addresses are in the kernel’s address space.

0xffff0000 input control register (only the two LSB’s are used)

0xffff0004 input data register (holds one byte)

0xffff0008 output control register (only the two LSB’s are used)

0xffff000c output data register (holds one byte)

The LSB of each control register indicates whether the corresponding data register is “ready”. In
the input case, ready means that a character has been typed at the keyboard and is sitting in the
low order byte of the data register. In the output case, ready means that the output data register is
free to receive a byte from the CPU. For example, in the case of a (non-buffered) printer, the device
might not yet have printed the previous byte that was sitting in the register and hence might not
be ready.

1MARS does too, but I have not yet played with it.

1

COMP 273 Winter 2012 21 - memory mapped I/O, polling, DMA Mar. 29, 2012

Note how limited is SPIM’s memory mapped I/O. A real MIPS processor might have several I/O
devices, each of which would have several registers and each of these registers would need its own
(virtual) address. Devices might even have their own local memories which might use thousands of
bytes (e.g. a buffer).

Let’s look at an example. Suppose your program should read bytes from the input device and
load each byte into register $s2. Here’s how the kernel might try to do it.

lui $t0, 0xffff

lw $s2, 4($t0) # load from address 0xffff0004

Note that it loads the whole word starting at that address, instead of just a byte.
From the kernel programmer’s perspective, this is quite simple. From the underlying hardware

perspective, it is more complicated. The MIPS hardware must recognize that the address is in the
memory mapped I/O region and handle it properly. In particular, when the kernel program executes
the above lw instruction, the hardware must detect that the desired address does not correspond to
an item in the data cache but rather is some word in the I/O device’s memory. This is very similar
to a cache miss, except that now it must get the desired word from the I/O device instead of from
main memory.

The CPU puts an address on address line of the system bus, e.g. the address of the I/O device
and/or some register number or som offset within the local memory of that device, and sets certain
control lines on the system bus to indicate that the CPU wants to read from that device. The
I/O device controller reads the bus (always) and sees the address and control and then puts the
requested data item onto the data bus.

I emphasize: this is the same general mechanism that would be used for a main memory access
in the case of a cache miss. Now it is an I/O device that provides the data to the CPU.

Similarly, for an output, the sw instruction would be used and the address where the word
should be stored would be within a reserved (memory mapped) region of the kernel’s address space.
The CPU would put that address on the bus (after translating this virtual address into a physical
address that indicates the I/O device number and perhaps some offset within that device’s memory)
and set a write control signal on the control bus. Again, the mechanism is similar to storing a word
to main memory. The main difference is that the addresses on the address bus indicates that the
CPU is communicating with the I/O controller, not with main memory!

Polling

One issue that arises with the above example is that it only makes sense to read from the input
device when the input device is ready, e.g. when there is a byte of data to be read. (This issue is
independent of whether one uses isolated I/O or memory mapped I/O.)

To solve this problem, one can use a method called polling. Before the CPU can read from the
input device, it checks the status of the input device and see if it is “ready,” meaning that the CPU
checks the “ready” bit in the input control register 0xffff0000, which is bit 0 (the least significant
bit). In particular, the CPU needs to wait until this bit has the value 1. This can be implemented
in MIPS with a small polling loop.

lui $t0, 0xffff

Wait: lw $t1, 0($t0) # load from the input control register

2

COMP 273 Winter 2012 21 - memory mapped I/O, polling, DMA Mar. 29, 2012

andi $t1, $t1, 0x0001 # reset (clear) all bits except LSB

beq $t1, $zero, Wait # if not yet ready, then loop back

lw $s2, 4($t0) # input device is ready, so read

A similar polling loop is used for the output device:

lui $t0, 0xffff

Wait: lw $t1, 8($t0) # load the output control register

andi $t1, $t1, 0x0001 # reset all bits except LSB

beq $t1, $zero, Wait # if not ready, then loop back

sw $s2, 12($t0) # output device is ready, so write

Obviously polling is not an efficient solution. The CPU would waste many cycles looping and
waiting for the ready bit to turn on. Imagine the CPU clock clicking along at 2 GHz waiting for a
human to respond to some prompt and press <ENTER>. People are slow; the delay could easily
be several billion clock pulses.

This inefficiency problem is solved to some extent by limiting each process to some finite stretch
of time. There are various ways to implement it. The simplest would just be to use a finite for-loop,
instead of an infinite loop.2 The number of times you go through the loop might depend on various
factors, such as the number of other processes running and the importance of having the I/O done
as soon as the device is available.

One final point: The above polling example uses memory-mapped I/O, but it could have used
isolated I/O instead.

Example: buffered input

Suppose a computer has a single console display window for the user to enter instructions. The
user types on a keyboard and the typed characters are echoed in the console (so that the user can
see if he/she made typing mistakes).

The user notices that there sometimes there is a large time delay between when the user enters
characters and when the characters are displayed in the console but that the console eventually
catches up. What is happening here?

First, assume that the keyboard controller has a large buffer – a circular array 3 – where it
stores the values entered by the user. The controller has two registers, front and back, which hold
the numbers of characters that have been entered by the user and the number of characters that
have been read by the CPU, respectively. Each time a character is entered or read, the registers
are incremented. Certain situations have special status, which could be detected:

• The character buffer is considered full when the difference of these two indices is N and in
this case keystrokes are ignored.

• The keyboard controller is “ready” to provide a character to the CPU when the difference of
the two indices is greater than 0.

2The alternative, which came up in class, is for the CPU to interrupt the infinite loop after some number of clock

cycles. I have decided not to include this case in the discussion here; it would be just be confusing since we haven’t

covered interrupts yet. We’ll discuss interrupts next lecture.
3In case you didn’t cover it in COMP 250, a circular array is an array of size where the index i can be any positive

integer, and the index is computer with i mod N .

3

COMP 273 Winter 2012 21 - memory mapped I/O, polling, DMA Mar. 29, 2012

In each case there might be a circuit which tests for these conditions.
With this buffer in mind, we can see what is causing the delay in echoing to the console. Suppose

the user is typing into the keyboard, but the system bus is being used by some I/O device. The
buffer starts to fill up, and the CPU only reads from the buffer when the bus is available for it to do
so. The CPU grabs a short time slice, and quickly reads a character and writes a character (to the
console i.e. output) and does this until it empties the buffer or until it gives up the bus or pauses
the process and continues with another process.

Direct memory access (DMA)

Another mechanism for I/O is direct memory access (DMA). This is a specialized method which
involves communication between memory and an I/O device. The idea is for an I/O controller (say
the hard disk or the printer controller) to have its own specialized set of circuits, registers, and local
memory which can communicate with main memory via the system bus. Such an I/O controller
is called a DMA controller. The advantage is that it can take over much of the work of the CPU
in getting the data onto and off of the system bus and to/from main memory. The CPU would
first tell the DMA controller what it should do, and then the CPU can continue executing other
processes while the DMA controller uses the bus.

What does the CPU need to tell a DMA controller in order for the DMA controller to take over
this work? Take the example of a page fault. The kernel program (page fault handler) needs to
modify the page table, and it also needs to bring a page from the hard disk to main memory (and
maybe swap a page out too). How is this done?

Let’s take the case that a page is swapped out, which is what I sketched in class. The kernel
needs to specify the following parameters to the DMA controller of hard disk:

• a physical page address in main memory to be swapped out

• a physical page address on the hard disk (where the page goes)

• control signals (e.g. copy one page from main memory to hard disk)

For each of these parameters, the DMA controller has a special register to hold the value of the
parameter. In instructing the DMA controller what to do, the kernel program must write into
each of these registers. For the above example, we could give these DMA registers the names
AddrMainMem, AddrHardDisk, CtlHardDisk. For each of these registers, the CPU must:

• put the address of the DMA register onto the address bus

• put the value to be stored in that DMA register onto the data bus

• put control signals onto the control bus (e.g. write not read)

ASIDE: One possible source of confusion is that the data bus needs to deliver the contents of each
the three registers. It needs multiple bus cycles to do so, namely one bus cycle for each register.
Moreover, since these registers can contain addresses (AddrMainMem, Addrharddisk), as well as
control signals (CtlHardDisk), we see that the data bus can carries not just data but also addresses
and control signals. (Don’t make the mistake of thinking that any signal that is an address or
control must go on the address or control bus, respectively.)

4

COMP 273 Winter 2012 21 - memory mapped I/O, polling, DMA Mar. 29, 2012

Once the DMA controller’s registers are written to, the DMA controller can initiate the memory
transfer. It could do so by executing a sequence of instructions, something like this.

initialize baseReg to address where page will be put in the local

memory of the controller (the "disk cache")

while offset = 0 to pagesize -1 {

put address AddrMainMem on address bus

put control signals on the control bus so main memory

writes a word onto data bus

read word from data bus and put into local memory at

address (baseReg + offset)

AddrMainMem = AddMainMem + 1 // 1 word

}

Then, when the entire page has been read, the page can be written the hard disk itself. For this,
the controller uses the value AddrHardDisk which would be the address where the page goes on the
hard disk. A similar sequence of instructions as above could be used for this.

DMA: Bus request and bus granted

The next major issue to be discussed is how the DMA controller and the CPU coordinate who gets
to use the bus at a given time. When the CPU sends its instructions to the DMA controller (as
in the above example), the DMA controller might not be ready to execute the instructions right
away. For example, suppose a page fault occurs and the page fault handler requests a page to be
transferred from the hard disk DMA controller to main memory, i.e. it communicates this request
on the system bus. There is no need for the CPU to disconnect itself immediately from the system
bus after making the request since the HD controller first needs to get the page off the hard disk
before it can use the bus. If the hard disk controller is just waiting for the hard disk to swing
around, then there is no reason why the hard disk controller needs to have the system bus.

How then can the hard disk controller eventually take over the system bus once it is ready to use
it, namely after it has read the page from the disk and put it in its local memory? (Assume there
is only one I/O device (the hard disk) and hence only one DMA device. We’ll return to the case of
multiple DMA devices next lecture.) First, the hard disk/DMA controller needs to communicate
that it is ready to use the bus.

A DMA controller and the CPU communicate via two special control lines: BR (bus request)
which goes from the DMA controller to the CPU, and BG (bus granted) which goes from CPU to
DMA. If the CPU is using the bus, it sets BG to 0. Now, when the DMA controller is ready to use
the system bus, the DMA controller sets BR to 1. If the CPU doesn’t need the system bus, it sets
BG to 1 and it temporarily disconnects itself from the system bus (electronically speaking, it shuts
off its tri-state buffers and stops writing on the system bus). If the CPU is in the middle of using
the system bus, it finishes using it and then sets BG to 1 and disconnects from system bus.

Note that BR and BG signals cannot be sent on the system bus. These signals are used to decide
who uses the system bus, and so they must always be available. The CPU must always be able to
communicate the value of BG to the DMA controller, and the DMA controller must always be able

5

COMP 273 Winter 2012 21 - memory mapped I/O, polling, DMA Mar. 29, 2012

to communicate the value of BR to the CPU. Separate direct lines (”point-to-point”) between the
CPU and the DMA controller are needed to carry these signals.

printer
mouse

drive
 disk
hard

main memoryCPU

floppy

 drive

system bus

keyboard

BG1

BR1

BR4

BG4

The above figure shows two DMA devices, say the printer and the hard drive. I have labelled two
sets of BR and BG signals. The figure also shows that the I/O controllers have their own registers
and little RAMs. These registers have physical addresses (I/O device number and register number
or memory address number within that device). In a memory mapped system, these registers and
memory would have corresponding virtual addresses which would need to be translated.

Hard disk

A few final comments about how to improve hard disk performance....
Recall that the hard disk controller has a local memory (DRAM). It is sometimes called the

disk cache. When a page is read from disk, it is put into the cache, and then transferred to main
memory as a subseqent stage. Similarly, when a page is brought from main memory to the hard
disk controller, it is put in the disk cache and then later moved to the disk itself (as was described
earlier in the lecture).

To improve performance when reading a page from the hard disk, neighboring physical pages
could be read as well. This is easy to do because once the hard disk has spun around to the position
of the page, the controller can easily read off neighboring pages too. Reading neighboring would
be useful when adjacent virtual pages are stored on the hard disk as adjacent physical pages. For
example, a file might consist of multiple pages – it would be better to store them side by side so
that they can be accessed at the same time.

6

COMP 273 Winter 2012 21 - memory mapped I/O, polling, DMA Mar. 29, 2012

You might have heard of disk fragmentation. For example, suppose you are storing a file on
your hard disk. The file is an application which consists of many pages of source code. When you
first put the file on the hard disk, it would be nice to keep all the pages in order and at consecutive
page addresses on the disk. However, this might not be possible since the disk might not have a
big empty region available. The disk might contain lots of free space, but it might consist of many
small intervals e.g. where previous files had been deleted. You can imagine that after years of use,
and many adds and file deletes, the number of large empty gaps decreases and the number of small
gaps increases. This is fragmentation. The disk doesn’t work as well when it is fragmented, because
the trick mentioned in the previous paragraph is not as effective.

Finally, another way to improve performance of the disk arises when there are several read/write
requests for data on different parts of the disk. Rather than performing the read/write in the order
of request, which might take multiple spins of the disk, the hard disk controller could sort the list of
pages so that it could access them in one spin. For example, suppose requests were made for page
3,7,5,4 at a time when the head is at position for page 2. Rather that doing 3, 7 and then spinning
all the way around for 5 and then all the way around again for 4, it could get the requests in order
3,4,5,7 in a single spin of the disk.

7

