lecture 20

Input / Output (1/0) 2

- isolated vs. memory mapped I/O
- program controlled 1/O: polling

- direct memory access (DMA)

Wed. March 23, 2016

Isolated 1/0O

In MARS simulator of MIPS, we uses syscall for I/O e.g.
reading from keyboard, printing to console.

Conceptually, what happens there?

You can think of MARS as pausing, and your computer's
operating system performing the requested operation.

Real MIPS processors do not use syscalls for I/O.
Isolated 1/O is a more general and common approach. The

processor has special instructions for specific /0O operations
e.g. which refer to specific 1/O registers.

Memory Mapped 1/O

"Memory mapped" /O (MMIO) is a different approach.
MMIO is used in real MIPS processors.

It uses addresses from 0xffff0000 to OXxffffffff (in kernel).

console output data register

[memary map imit addrass N '.A D O X p"p ’=p£
T ksmlr:aac,:mnanmas OK f ‘C 'C-C Qoo C \ UL $)
T MEHC base addrass
Ja;IJOt‘L:‘-’.‘E kdata base addrass e \ \/\) j 3 O \ %L‘ ($ ‘t O‘>
SR i console output control register —
e Ox Fftf 000y Lo s ceady B
£ LRl AXICLLTORT| umen speea: hi
' Compact, Dato ot Address O . .
3 Comoact, Tewt aLAtdress © console input data register r//\
T TP I oy B 1 1 /
AXTOALCOrn skaeck ponber S
CEET i CO”SE"e ?ﬁ“todata register —) Ox {00 000 ¢
UzLUC4LIOL Neap base aodress 4 a0
Sx1JOZLN00 .dl[: bazs address O X ’C \j/ .
ss100L30t, | alobal pointer Sap What happens physically ?
JTLUOULIOL data segment bose cddress
e B console input control register | —)
. textbaszatdrzss Ox 'pr-c f o0o) Lsp s Pﬁaﬂ{lul ot
Aty o i | Ay | | Comyad | Reinl J
e y ™M \/\)B . - . - I i
IF . [D ALY ME ! Let's examine this in more detail (AND MORE GENERAL). branch to kernel's I/O exception handler
\
L Pc) | \ [- CPU translates virtual address 0xffff0004 to 1/O device
- . address, namely keyboard ID
b \‘ T ‘ ‘ st)
nST (N\ e
T sy (LERI e roou)
. > |
| 1 | (| (o cuche - CPU write I/O device address on the address bus and sets
\ , ’ ‘[et Read|O control to 1 \os?
o d \/E - keyboard controller puts byte onto the data bus (last lecture) \e&.,{
Aisk
- CPU reads data bus
L w §so, * ($t°3

Rather than reading from memory in the usual way, there
would be a branch to the 1/0O exception handler.

- kernel jumps back to user program, which continues execution
(and byte is loaded into register)

Note similarity to TLB or instruction/data cache miss.

—
(”U)’u—‘\ ‘ moin “
| (o cu«xe\ | /Y\Cvﬂdﬂj |
p ot _—

NNl

o=l
: @

Mouse ka'lgoun{ F”M’("r weni oy

\hov d f— \[/
N

1 3\’20\ ﬂto/ T/O CWJWJV\/{”

[C awc

Ox el
12 ($to)

\MNL $£O)
S W § S0 |

We sort of skipped an issue:
CPU to device : "Ready or not ? "
- Does input device have a (new) input ?

- Has output device displayed the previous output (s) ?

Program contolled 1/O: Polling

console input control register

[—
Ox FfLf o000 v
LSB is NR‘LM‘ !
<
console input data register —
\
Ox {f£f 000 f
lui $t0, Oxffff
Wait:

w $t1, 0($t0) # load from the input control register
andi $t1, $t1, 0x0001 # reset (clear) all bits except LSB
beq $t1, $zero, Wait # if not ready, then loop back

Iw $s2, 4($t0) # input device is ready, so read

Kernel would only let a process run for a limited number of clock
cycles before pausing and giving control to another process, and
later returning. So, no worries about an infinite loop.

In principle, polling can be done with isolated IO or memory mapped
10. (The concept is general.)

We cannot say how MIPS implements polling. MIPS is specified at
the assembly language level.

Polling (e.g. output)

—

console output data register

Ox {f5f 000 C

console output control register

Ox Ffff000g

jo—

[14
Lsﬁ s P‘taa\j

o T

lui $tO, Oxffff

Wait:

w $t1, 8($t0)
andi $t1, $t1, 0x0001
beq $t1, $zero, Wait

load the output control reg
reset all bits except LSB
if not ready, then loop back

sw $s2, 12($t0) # output device ready, so write

User types on keyboard and characters are echoed in

CPU catches up.

What's going on (with the burst) ?

display window. But sometimes the echoed characters are
delayed (CPU or bus is busy). Then a burst occurs as the

c‘,\p\r kL'\‘LrS ®
read
(Lj {78
brek
C\r\ﬁratkf5 CLa.ra;-‘eri GV\}’CNJ
entkered \"ALJH'A !jv‘
C ng,\ev Sront v

(Sketch only) Suppose the keyboard controller has a
buffer which is a circular array.

7
J— . Assume front and back counters have |
\ becl enough bits that we don't need to |
worry about overflow of these counter
‘;FDM— registers, and can reset them to 0 ‘
Q whenever front = back
(D ack)
D (‘chﬁj = (»;—\f‘am": > [’3 Acc
)
\ — A
= J |
= Futl (F*(tw+~ Lade > 7\) |

— |
=° \
\ ‘ C,'L,"LM‘G\V :¢' |
%‘ ooy o back |
[

[(N o y L l— > faut ‘

‘ ’bupw[er> \:‘

p— ‘
J‘ @N'l |

=

User presses a key:

o front = front + 1

) if (front-back < N) // buffer is not full
buffer[front mod N] = key

CPU reads a character:

buffer[back mod N] is put onto data bus
—> § back=back +1

Burst is due to CPU rapidly reading a sequence of
characters from the buffer, once system bus is free.

lecture 20

Input / Output (I/0) 2

- direct memory access (DMA)

Wed. March 23, 2016

Suppose page fault occurs. Then, kernel must coordinate
a page swap. How ? (sketch)

Direct Memory Access (DMA)

M o
memomj

\,\MA J
disk

DMA (for page fault): Step 1
CPU writes onto system bus

- HDD controller's address (device ID)
(on address bus)

- instruction for HDD controller
(on control bus)

- physical *address* of pages
(on *data* bus)

DMA (for page fault): Step 2 (desired)

™o n
me WI()Nj
WV
o d —/5‘
disk

HDD controller takes over.

disk phosical

Dag < 0*03 ess

\ A\ WMo _—
Mo WA= T \ |

)6 A
| pace RACVTH
&~ ‘ rJ |
1 \< | N Lo
S | oxfFsev [1|
| |
- Aata [
as ‘
| obher regishcs,
|| (AN |
\ corcw %

HDD controller
- gets access to system bus (How?)
- instructs main memory to write on the system bus, and

reads the page word by word, storing in local memory
on the HDD controller

(How ?)

- transfers the page from disk cache to the hard disk
when the HD is at the right physical position
ard

F e

DD Contller

How does the DMA (HDD) controller gets write access to
system bus, after it has retrieved a page from disk ?

If it doen't currently have access to the bus, then how can it
tell the CPU that it wants access ?

&u% | f—queslr Eu} érm@m&

J
3! 86)
(BR) (86)

W\“V\-"('D(

FAssume CPU s seb B0 0

DA sehs BR=1|
c ?VL ShfS \,J\/‘H'\\v\j on bus
< evcﬂ'\‘m\kj\

initialize baseReg to the address where the page will be go in the
local memory ("disk cache") of the HDD controller

while offset = 0 to pagesize -1 {
put control signals on the control bus so main memory
writes a word onto data bus, and put address AddrMainMem
on address bus

read word from data bus and put it into disk cache at
address (baseReg + offset)
AddrMainMem = AddMainMem + 4 // 1 word

Similar steps for transferring page from HDD to main
memory.

main
W\warﬁ

\/\N‘Jl % /

Aisk !

ASIDE: Improving HDD performance ?

read/write multiple pages at a time

- good if neighboring physical pages correspond to
neighboring virtual pages

- order list of physical pages that have been requested

