
lecture 20

 Input / Output (I/O) 2

 - isolated vs. memory mapped I/O

 - program controlled I/O: polling

 - direct memory access (DMA)

 Wed. March 23, 2016

 Isolated I/O

In MARS simulator of MIPS, we uses syscall for I/O e.g.
reading from keyboard, printing to console.

Conceptually, what happens there?

You can think of MARS as pausing, and your computer's
operating system performing the requested operation.

Real MIPS processors do not use syscalls for I/O.

Isolated I/O is a more general and common approach. The
processor has special instructions for specific I/O operations
e.g. which refer to specific I/O registers.

 Memory Mapped I/O

"Memory mapped" I/O (MMIO) is a different approach.

MMIO is used in real MIPS processors.

It uses addresses from 0xffff0000 to 0xffffffff (in kernel).
(64 KB ~ 2^16 bytes)

MARS can be configured to use MMIO.

console output data register

console output control register

console input data register

console input control register

console input data register

What happens physically ?

There is a circuit that detects that this is a memory mapped
address, and that loads the word from the register instead....

It only loads a byte, but let's ignore that detail.

Rather than reading from memory in the usual way, there
would be a branch to the I/O exception handler.

Let's examine this in more detail (AND MORE GENERAL).
(console input = keyboard)

- branch to kernel's I/O exception handler

- CPU translates virtual address 0xffff0004 to I/O device
 address, namely keyboard ID (details not specified.
 hardware implementation dependent)

- CPU write I/O device address on the address bus and sets
 ReadIO control to 1

- keyboard controller puts byte onto the data bus (last lecture)

- CPU reads data bus

- kernel jumps back to user program, which continues execution
 (and byte is loaded into register)

Note similarity to TLB or instruction/data cache miss.

Addresses, data, controls need to be put on bus.

We sort of skipped an issue:

CPU to device : "Ready or not ? "

- Does input device have a (new) input ?

- Has output device displayed the previous output (s) ?

 Program contolled I/O: Polling
(Are you ready? Are you ready? )

console input data register

console input control register

 Polling (e.g. output)

console output data register

console output control register

(Sketch only) Suppose the keyboard controller has a
buffer which is a circular array.

Assume front and back counters have
enough bits that we don't need to
worry about overflow of these counter
registers, and can reset them to 0
whenever front = back.

Burst is due to CPU rapidly reading a sequence of
characters from the buffer, once system bus is free.
(Assume CPU echos each character right away to the
console.)

User presses a key:

 if (front - back < N) // buffer is not full
front = front + 1

 buffer[front mod N] = key

CPU reads a character:

 buffer[back mod N] is put onto data bus
back = back + 1

lecture 20

 Input / Output (I/O) 2

 - isolated vs. memory mapped I/O

 - program controlled I/O: polling

 - direct memory access (DMA)

 Wed. March 23, 2016

Suppose page fault occurs. Then, kernel must coordinate
a page swap. How ? (sketch)

Direct Memory Access (DMA) DMA (for page fault): Step 1

CPU writes onto system bus

- HDD controller's address (device ID)
(on address bus)

- instruction for HDD controller
(on control bus)

- physical *address* of pages
(on *data* bus)

 DMA (for page fault): Step 2 (desired)

HDD controller takes over. HDD controller

- gets write access to system bus (How?)

- instructs main memory to write on the system bus, and
 reads the page word by word, storing in local memory

("disk cache" on previous slide) on the HDD controller
(How ?)

- transfers the page from disk cache to the hard disk
 when the HD is at the right physical position

How does the DMA (HDD) controller gets write access to
system bus, after it has retrieved a page from disk ?

If it doen't currently have access to the bus, then how can it
tell the CPU that it wants access ?

initialize baseReg to the address where the page will be go in the
 local memory ("disk cache") of the HDD controller

while offset = 0 to pagesize -1 {
 put control signals on the control bus so main memory
 writes a word onto data bus, and put address AddrMainMem
 on address bus

 read word from data bus and put it into disk cache at
 address (baseReg + offset)

AddrMainMem = AddMainMem + 4 // 1 word
}

DMA controller (i.e. HDD controller) instructs main memory to write
on the system bus. DMA controller then reads the page word by
word, storing the words in its local memory. Here is pseudocode
sketching what the DMA controller needs to do.

Similar steps for transferring page from HDD to main
memory. ASIDE: Improving HDD performance ?

read/write multiple pages at a time

- good if neighboring physical pages correspond to
 neighboring virtual pages (disk fragmentation issue)

- order list of physical pages that have been requested

