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Isolated 1/0O

In MARS simulator of MIPS, we uses syscall for I/O e.g.
reading from keyboard, printing to console.

Conceptually, what happens there?

You can think of MARS as pausing, and your computer's
operating system performing the requested operation.

Real MIPS processors do not use syscalls for I/O.
Isolated 1/O is a more general and common approach. The

processor has special instructions for specific /0O operations
e.g. which refer to specific 1/O registers.

Memory Mapped 1/O

"Memory mapped" /O (MMIO) is a different approach.
MMIO is used in real MIPS processors.

It uses addresses from 0xffff0000 to OXxffffffff (in kernel).
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Rather than reading from memory in the usual way, there
would be a branch to the 1/0O exception handler.

- kernel jumps back to user program, which continues execution
(and byte is loaded into register)




Note similarity to TLB or instruction/data cache miss.
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We sort of skipped an issue:
CPU to device : "Ready or not ? "
- Does input device have a (new) input ?

- Has output device displayed the previous output (s) ?

Program contolled 1/O: Polling

console input control register
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Wait:

w  $t1, 0($t0) # load from the input control register
andi $t1, $t1, 0x0001  # reset (clear) all bits except LSB
beq $t1, $zero, Wait  # if not ready, then loop back

Iw $s2, 4( $t0) # input device is ready, so read

Kernel would only let a process run for a limited number of clock
cycles before pausing and giving control to another process, and
later returning.  So, no worries about an infinite loop.

In principle, polling can be done with isolated IO or memory mapped
10. (The concept is general.)

We cannot say how MIPS implements polling. MIPS is specified at
the assembly language level.

Polling (e.g. output)
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console output data register
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lui $tO, Oxffff

Wait:

w  $t1, 8($t0)
andi  $t1, $t1, 0x0001
beq $t1, $zero, Wait

# load the output control reg
# reset all bits except LSB
# if not ready, then loop back

sw  $s2, 12($t0) # output device ready, so write

User types on keyboard and characters are echoed in

CPU catches up.

What's going on (with the burst) ?

display window. But sometimes the echoed characters are
delayed (CPU or bus is busy). Then a burst occurs as the
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(Sketch only) Suppose the keyboard controller has a
buffer which is a circular array.
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User presses a key:

o front = front + 1

) if (front-back < N) // buffer is not full
buffer[ front mod N] = key

CPU reads a character:

buffer[ back mod N] is put onto data bus
—> § back=back +1

Burst is due to CPU rapidly reading a sequence of
characters from the buffer, once system bus is free.
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Suppose page fault occurs. Then, kernel must coordinate
a page swap. How ? (sketch)

Direct Memory Access (DMA)
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DMA (for page fault): Step 1
CPU writes onto system bus

- HDD controller's address (device ID)
(on address bus)

- instruction for HDD controller
(on control bus)

- physical *address* of pages
(on *data* bus)

DMA (for page fault): Step 2 (desired)
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HDD controller takes over.

disk phosical
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HDD controller
- gets access to system bus (How?)
- instructs main memory to write on the system bus, and

reads the page word by word, storing in local memory
on the HDD controller

(How ?)

- transfers the page from disk cache to the hard disk
when the HD is at the right physical position
ard
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How does the DMA (HDD) controller gets write access to
system bus, after it has retrieved a page from disk ?

If it doen't currently have access to the bus, then how can it
tell the CPU that it wants access ?




&u% | f—queslr Eu} érm@m&

J
3! 86 )
(BR) (86 )

W\“V\-"('D(

FAssume  CPU s seb B0 0

DA sehs BR=1|
c ?VL ShfS \,J\/‘H'\\v\j on bus
< evcﬂ'\‘m\kj\

initialize baseReg to the address where the page will be go in the
local memory ("disk cache") of the HDD controller

while offset = 0 to pagesize -1 {
put control signals on the control bus so main memory
writes a word onto data bus, and put address AddrMainMem
on address bus

read word from data bus and put it into disk cache at
address (baseReg + offset)
AddrMainMem = AddMainMem + 4 // 1 word

Similar steps for transferring page from HDD to main
memory.
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ASIDE: Improving HDD performance ?

read/write multiple pages at a time

- good if neighboring physical pages correspond to
neighboring virtual pages

- order list of physical pages that have been requested




