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You are familiar with how MIPS programs step from one instruction to the next, and how
branches can occur conditionally or unconditionally. We next examine the machine level repre-
sentation of how MIPS goes from one instruction to the next. We will examine how each MIPS
instruction is “decoded” so that data is passed to the appropriate places (e.g. from register to
memory, from memory to a register, from a register to another register, etc). By the end of this
lecture and the next, you will have a basic understanding of how the digital logic that you learned at
the beginning of this course is related to the MIPS instructions and programs that we have covered
in more recent lectrures.

Data paths for MIPS instructions

In this lecture and the next, we will look at a mechanism such that one instruction is executed in
each clock cycle. This is known as the single cycle model. In subsequent lectures, we will see the
limitations of the single cycle model, and we will discuss ways around it.

Instruction fetch

We have mentioned that both data and instructions are in Memory. For an instruction to be
executed, it first must be read out of Memory. MIPS has a special program counter register (PC)
that holds the address of the current instruction being executed. As a MIPS programmer, you are
not responsible for “fetching” the next instruction from memory. This done automatically. Let’s
have a look at how this is done.

Consider the simple case of a non-branching instruction such as add or lw or sw. The address
of the instruction following this non-branching instruction is, by default, the address of the current
instruction plus 4 (that is, plus 4 bytes or one word). Because we are assuming that each instruction
takes one clock cycle, at the end of clock cycle, PC is updated to PC+4.

The current instruction (add or lw or sw, ...) is fetched by using PC to select a word from
Memory, namely the word containing the current instruction. Naively, for now, you can think of a
huge multiplexor circuit which selects one of 230 words from Memory. Later in the course, we will
see how memory hardware really is organized and accessed.
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As shown in the above figure, the contents of PC (a 32 bit number, which is an address, is sent to
Memory) and the current instruction (also 32 bits) is read from the word starting at that PC-defined
Memory address.

Let’s next look at several examples of instructions and consider the “datapaths” and how these
are controlled.

Data path for add

What happens when the 32 bit add instruction is read out of memory? The opcode field and funct
fields together encode that the operation is addition (rather than some other arithmetic or logical
operation). The three register fields of the instruction specify which registers hold the operands and
which register should receive the output of the ALU. Thus, the op code and funct fields are used to
control what data gets puts on what lines and when data gets written. I will say more about how
the control signals are determined next lecture. For now, we will concentrate on the datapaths, as
shown in the figure below.

Recall that an add instruction has R format:

field op rs rt rd shamt funct
numbits 6 5 5 5 5 6
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Here is what happens during an add instruction:

• new PC value is computed and written (at the end of clock cycle)

• instruction is read (“fetched”) from memory

• two ReadReg and the WriteReg are selected (recall lecture 6, page 5)
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• control signals for ALU operation are determined (to be discussed next lecture)

• RegData values are read from two registers and input to ALU; ALU operation is performed

• result is written into WriteReg (at the end of clock cycle)

The steps above can all be done in a single clock cycle, provided the clock interval is long enough
that all circuits have stabilized (and they would need to designed to ensure thius). For example,
the ALU involves carry values which take time to ripple through.

Data path for load word (lw)

Recall that this instruction has I format:

field op rs rt immediate
numbits 6 5 5 16
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For lw, the first three steps are the same as in the add instruction, but the remaining steps are
quite different.

• new PC value is computed (it is written at next clock pulse)

• instruction is read (“fetched”) from memory

• ReadReg and WriteReg selected and RegWrite is specified

• base address for memory word is read from a register and fed to ALU

• offset (16 bit immediate field) is sign-extended and fed to ALU

• control signals are set up for ALU operation (see next lecture)
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• ALU computes sum of base address and sign-extended offset; result is sent to Memory

• word is read from Memory and written into a register (end of clock cycle)

Data path for store word (sw)

The data path for sw is slightly different from lw. Here it is:
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• new PC value is computed (it is written at next clock pulse)

• instruction is read (“fetched”) from memory

• two ReadReg are selected

• base address for memory word is read from a register and fed to ALU

• offset (16 bit immediate field) is sign-extended and fed to ALU

• control signals are set up for ALU operation

• ALU computes sum of base address and sign-extended offset; result is sent to Memory

• word is written into Memory (at end of clock cycle)

Data path for bne

Next let’s look at the case that the current instruction is a conditional branch, for example, bne.
This instruction is more interesting because the PC might not take the value PC+4.

To determine whether the branch condition is met, the bne instruction uses the ALU, and
performs a subtraction on the two register arguments. If the result is not zero, then the two
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registers do not hold the same values and, in this case, the program takes the branch. Otherwise,
the program continues to the next default instruction. That is, if the result of the ALU subtraction
is not zero, then

PC := PC + 4 + offset

else
PC := PC + 4 .

See the figure below for the datapath. The multiplexor in the upper part of the figure selects
between PC+4 and PC+4+offset. The selector signal depends on the 32 bit output of the ALU,
which has subtracted the two registers specified by the bne instruction. This 32 bit ALU result is
fed into a 32 bit OR gate. The output of the OR gate is labelled “NotZero” in the figure. This
NotZero signal is 1 if and only if the two registers do not have the same contents.

Note that the branch is only taken if indeed the instruction is bne. In the figure, the NotZero
signal is ANDed with a bne instruction control signal that indicates it is indeed a bne instruction.
(I have labelled the branch control as “bne instruction” in the figure.) The branch is taken when
both the NotZero signal is ON and the branch control is ON (1). e.g. For an add instruction or any
other R-format instruction, the branch signal would be OFF (0).

Also, notice that I have drawn the circuit in such a way that the offset is relative to the current
instruction address plus 4, rather than to the current instruction address. This is what MARS does,
as you can verify for yourself. (See example on slides.)
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One other detail worth noting: because instructions are word aligned in memory, MIPS assumes
that the two lowest order bits of an instruction address have the value 0. Thus, in the 16 bit
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address field of a conditional branch, MIPS doesn’t waste these two bits by always setting them to
00. Instead, the 16 bit field represents an offset of 4× the offset representation in binary. That is,
the offset value is “shifted” by two bits to the left before it is added to PC+4. Careful: no shift
register is required for this. Instead, two 0 wires are inserted directly, and the sign extend circuit
extends from 16 to 30 bits, so in total there are 32 bits.

Here are the steps of the bne instruction:

• PC holds the address of the current instruction

• instruction is read (“fetched”) from memory

• PC+4 value is computed

• value of PC+4 is added to sign-extended/shifted offset

• ReadReg values are set

• control signals are set up for subtraction in ALU

• RegData values are read from two registers into ALU

• ALU does subtraction and 32 bit result is fed into giant OR gate, whose output we call
NotZero

• NotZero is ANDed with a bne control to select either PC+4 or PC+4+offset, and selected
value is written into PC (at end of clock pulse)

Datapath for j (jump, J format)

field op address
numbits 6 26

The only tricky part about the jump instruction is how the address of the next instruction is
determined. Because instructions are word aligned, the 26 bit field is used to specify bits 2-27. Bits
0 and 1 have the value 00.

What about bits 28-31? These upper four bits are determined by the current upper 4 bits of
the PC. Recall that the MIPS instructions of user program go up to but not including 0x10000000.
Thus, all user instructions have 0000 as their highest four bits i.e. 0x0******* in hexadecimal.
MIPS doesn’t always concatenate 0000 onto the front of a jump instruction, since there are kernel
programs as well. Instructions in the kernel programs have addresses that are above 0x80000000.
So jump instructions in the kernel do not take 0000 as their upper four bits. Rather, they take
(1000)2 as their upper four bits, i.e. 0x8.
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Review of Assignment 1

At the end of this lecture, I viewed the algorithm that was used in the posted solution of Assignment
1. Details omitted in these notes. If you wish to see the algorithm, see the slides.
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