
 lecture 10

 MIPS assembly language 3

- arrays
- strings
- MIPS assembler directives and pseudoinstructions
- system calls (I/O)

 February 10, 2016

Arrays in C

Example:

int a[50];

 :

a[15] = a[7] ;

In C:

 a[15] = a[7] ;

In MIPS ? there are no "arrays" in MIPS

e.g. $s0 holds starting address of array a[] in Memory.

NOTE: You cannot transfer data directly between memory addresses

registers Memory

a[]
$s0

lw $t0, 28($s0) # a [7]

sw $t0, 60($s0) # a [15]

registers Memory

a[]
$t0
$s0

 Another Example

 m = a [i]; // C instruction

 $s1 $s0 $s2

How to translate this into MIPS ?

sll $t0, $s2, 2 # offset = i * 4
add $t0, $s0, $t0 # base + offset
lw $s1, 0($t0)

How to manipulate single bytes in Memory ?

Recall "lw" and "sw". There is also a load byte "lb" and a
store byte "sb" instruction.

1 word = 4 bytes

Strings in C (COMP 206)

- stored as consecutive bytes
 (essentially the same as an array of char)

- ASCII coded

- terminated with null char (0 in ASCII, we write '\0')

COMP 273

char *str; // Declare a pointer to a string.
 // str is an address (a 32 bit number).

str = "COMP 273";

str

vague picture of what's going on....

char *str; // Declare a pointer to a string.
// str is an address (a 32 bit number).

str = "COMP 273";

ASCII code

str

1 word = 4 bytes

better picture of what's going on....

Count the number of chars in a string (C)

char *str; // Declare a pointer to a string.
 // str is an address (a 32 bit number).

int ct = 0;

str = "COMP 273";

while (*(str + ct) != '\0'){ // coming soon in COMP 206

 ct++;

}

Strings in MIPS

registers

1 word = 4 bytes

a much better picture of what's going on....

C CODE
str = "COMP 273";
ct = 0;
while (*(str + ct) != '\0'){
 ct++;
 }

MIPS CODE ?
 # load the address where string begins
 # initialize ct to 0 (use a register)
loop:
 # compute address of Memory byte to examine next
 # load that byte into a register
 # if that byte is '\0', branch to exit
 # increment ct
 # jump back to "loop"
exit:
exit:

C CODE
str = "COMP 273";
while (*(str + ct) != '\0'){

 ct++;
 }

MIPS CODE
 la $s0, str # pseudoinstruction (load address)
 # I will explain this soon.

add $s1, $zero, $zero # initialize ct, $s1 = 0.
loop:
 add $t0, $s0, $s1 # address of byte to examine next
 lb $t1, 0($t0) # load that byte
 beq $t1, $zero, exit # branch if *(s + ct) == '\0'
 addi $s1, $s1, 1 # increment ct
 j loop
exit:

Q: How to get data into and out of Memory ?

A: 1) "assembler directives"

 2) "system calls"

recall MIPS Memory

kernel data
and
instructions

user data
and
instructions

 Assembler Directives (Example)

.data

str : .asciiz "I love COMP 273"

.text

.globl main

main:

str is a label that aids in programming. Think of it as a
label for an address (similar to the "Exit" labels that we
saw in conditional branches earlier).

"I love COMP 273"

0x8000 0000

 user data

0x1001 0000

user instructions

0x0000 0000

load address (la) pseudoinstruction

la $s0, str # pseudoinstruction

lui $s0, 4097 # true MIPS instruction
 # load upper immediate

(4097)_10 = 2^12 + 2^0

 = (0001000000000001)_2

 = 0x1001

 More Assembler Directives

y0 : .word -17

b0 : .byte 0xd, 62, -3 # signed
b1 : .byte 250 # out of range

arr0 : .space 1400

y1 : .word 0x2c24

0x8000 0000

0x1001 0000
0x1000 0000

0x0000 0000

0x2324 [4 bytes]
 :
 : [1400 bytes]
 :
-3 [4 bytes]
62 [1 byte]
0xd [1 byte]
-17 [4 bytes]

user data

user instructions

 Example: swap

C code

 tmp = y0;
 y0 = y1;
 y1 = tmp;

MIPS code

This code assumes that the variables are already in registers.

 move $t0, $s0
 move $s0, $s1 # "move" is a pseudoinstruction
 move $s1, $t0 #

 .data
y0: .word 162 # value of y0
y1: .word -17 # value of y1

 .text
 .globl main

main:

 # Here the variables are NOT already in registers.

 la $s0, y0 # load addresses of y0, y1
 la $s1, y1

 lw $t0, 0($s0) # load contents into registers
 lw $t1, 0($s1)

 sw $t0, 0($s1) # store the swapped values to Memory
 sw $t1, 0($s0)

la $s0, y0 # load addresses

la $s1, y1

lui $s0, 0x1001 # load addresses

lui $1, 0x1001
ori $s1, $1, 4

 # user not allowed to use $1 register

Q: How to get data into and out of Memory ?

A: 1) "assembler directives"

 2) "system calls"

System calls ("syscall" instruction) uses the console. syscall

This instruction uses registers $2, $4, $5 which you can
also write $v0 and $a0, $a1, respectively.

Example: print a string

 la $a0, str
 li $v0, 4 # li is a pseudoinstruction "load immediate"

ori $v0, $zero, 4 is the real instruction

 syscall

Example: read a string from console

li $v0, 8 # code for reading string is 8

add $a0, $zero, $s1 # $s1 specifies address
where string will start

la $t0, sizeBuffer # specifies a buffer size (see A2)
lw $a1, 0($t0) # load that buffer size.
syscall

The OS/kernel stops the program and waits for a string to be typed into
the console (hitting "enter" signals the end of the string, or max length is
reached). The string is then written from the buffer into Memory starting
at address specified by $s1. Only the string is written (not the whole
buffer size). Then the program continues.

ASIDE: technical detail about reading a string
from console

Every string must end with a "null terminator", namely 0x00 or '\0'.

If the user types in maxLenString - 1 characters, then the OS reads it
and returns the program to running state. Any extra keystrokes are
ignored.

e.g. suppose maximum length string (buffer size) is set to 4.

Typing "abc" (3 characters) will cause "abc\0" to be written into
Memory.

Typing "a<enter>" will cause "a\n\0" to be written into Memory, where
"\n" is C notation for 'line feed' or 'enter'.

Experiment with this yourself before plunging into Assignment 2.

 Example syscall codes for $v0

See documentation. Do not memorize this stuff...

 int float double string
print 1 2 3 4
read 5 6 7 8
exit

 Assignment 2 posted today

 Task: manipulate an array of string references (addresses).

 MIPS Memory the strings below are also
 stored in Memory

 Assignment 2: two parts

1) read in a list of strings from the console (loop)

 - store the strings in Memory

 - store the addresses of the strings in an array in
 Memory (this array is a list)

2) manipulate the list of strings using "move to front"

 - user enters an index i, and the i-th string address is
 moved to the front

"Move to front"

BEFORE

move to front: 2

AFTER

 The addresses and strings are all in Memory.

ADDED Feb 21:
In the original slides, I had
mistakenly put '\n' instead of both
'\n\0' in the strings on the right.
The strings in the figure now are
missing the line feeds '\n' (see
discussion in Q4).

[EDITED Feb 21] It is important to understand where your
variables are in Memory. Note we use assembler
directives to assign Memory for :

- maxLengthString (integer i.e. 1 word)

- stringReferenceArray (5 words)

- strings (100 bytes)

- prompts e.g. "enter maximum length of a string: "
 "enter a string:"
 "move to front index: "

The following slide shows how they are layed out, starting
at address 0x10010000. Note in MARS the addresses
increase to right and down (opposite from slides).

 [ADDED Feb 21]

