lecture 14

- Subset sum
- Knapsack

Resources for this lecture

- I used Kleinberg & Tardos
 Ch. 6.4
- Also see Roughgarden
 Week 3

We have a machine (resource) that can do only one task at a time. Task i takes time w_i, which tasks should we do?

\textbf{Problem 1.} Maximize the number of tasks that can be completed in time W.

This is similar to interval scheduling but now we only have durations, not start and finish times.

\begin{align*}
\text{task index} & \quad 1 \\
& \quad 2 \\
& \quad 3 \\
& \quad 4 \\
& \quad 5 \\
& \quad 6 \\
\text{duration is } w_i & \quad \{ \text{total available time is } W \}
\end{align*}

\textbf{Problem 1 (restated)}

Given a set of N items with weights $w_i \geq 0$ and given a bound W, find the largest subset $S \subseteq \{1, 2, \ldots, N\}$ of items such that $\sum_{i \in S} w_i \leq W$.

Page dimensions: 612.0x792.0
Greedy approach

- order the intervals by increasing W_i
- Find the largest k such that
 \[
 \sum_{j=1}^{k} W_i \leq W
 \]

Proof that greedy finds optimal solution:

By contradiction:

Let greedy choose items $\{i_1, i_2, \ldots, i_k\}$

Assume there exists a subset with $k+1$ items $S = \{i_1, i_2, i_3, \ldots, i_k, i_{k+1}\}$ in increasing sequence such that

\[
\sum_{j=1}^{k+1} W_{i_j} \leq W
\]

But then the greedy solution would not have stopped after k, since

\[
\sum_{j=1}^{k} W_{i_j} + W_{i_{k+1}} \leq \sum_{j=1}^{k+1} W_{i_j} \leq W
\]

assumed

Thus, the assumed sequence $\{i_j\}$ cannot exist. (contradiction)

Q: Why does greedy work?

A:

Intuitively, choosing the smallest w_i leaves the most remainder.

How to prove it mathematically?

Problem 2 ("subset sum")

Find the subset $S \subseteq \{1, 2, \ldots, N\}$ that maximizes

\[
\sum_{i \in S} W_i
\]

such that

\[
\sum_{i \in S} W_i \leq W
\]
Example:
\[w_1 = 1, \ w_2 = 1, \ w_3 = 9, \ w_4 = 9 \]
\[W = 18 \]

Problem 1 \[\Rightarrow S = \{ w_1, w_2, w_3 \} \]

Problem 2 \[\Rightarrow S = \{ w_3, w_4 \} \]

Question: how many subsets of \(\{ 1, 2, 3, 4, \ldots, N \} \) are there?

Answer:
\[2^N = 2 \times 2 \times \cdots \times 2 \]

In each element is either in or out.

To solve Problem 2 efficiently, we must avoid the exponential number of subsets.

Define:
\[
\text{Opt}(N, W) \equiv \max \left\{ \sum_{i \in S} w_i : \sum_{i \in S} w_i \leq W \right\}
\]

Dynamic programming: how to break this problem into smaller problems?

"Smaller"? \[\Rightarrow \text{reduce } N \text{ or } W \]

If \(w_i > W \) \ [then we can't use i]

\[
\text{Opt}(i, W) = \text{Opt}(i-1, W)
\]

Else
\[
\text{Opt}(i, W) = \max \{ \text{Opt}(i-1, W), \ w_i + \text{Opt}(i-1, W - w_i) \}
\]
Exercise

\(w_1 = 2, w_2 = 3, w_3 = 3, W = 6 \)

Find \(\text{Opt}[i][\omega] \)

\[
\begin{array}{c|cccccc}
\omega & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
w_i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 2 & 2 & 2 & 2 & 2 \\
 & 0 & 0 & 2 & 4 & 4 & 4 & 4 \\
 & 0 & 0 & 2 & 3 & 4 & ? & ? \\
\end{array}
\]

Given the table \(\text{Opt}[i][\omega] \)

find \(S = \{1, 2, \ldots, N^3\} \) such that

\[\sum_{j \in S} w_j = \text{Opt}[N][W] \]

\[
\begin{array}{c|cccccc}
\omega & 0 & 1 & 2 & 3 & 4 & 5 & 6 = W \\
\hline
w_i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 2 & 2 & 2 & 2 & 2 \\
 & 0 & 0 & 2 & 4 & 4 & 4 & 4 \\
 & 0 & 0 & 2 & 3 & 4 & 5 & ? \\
\end{array}
\]

\[
\begin{array}{c|cccccc}
\omega & 0 & 1 & 2 & 3 & 4 & 5 & 6 = W \\
\hline
w_i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 2 & 2 & 2 & 2 & 2 \\
 & 0 & 0 & 2 & 4 & 4 & 4 & 4 \\
 & 0 & 0 & 2 & 3 & 4 & 5 & ? \\
\end{array}
\]

\[
S = 2 + w_3 = 5 \neq 4 \therefore w_3 \notin S
\]
2 = 0 + \text{W}_2, \quad 2 = \text{W}_2

Thus,

either solution works.

\textbf{Claim:} running time and space required is \(O(NW) \).

\textbf{Exercise:} what if we used a recursive approach instead?

\underline{Knapsack}

Given a set of \(N \) items with weights \(\text{w}_i \) and values \(\text{v}_i \), and given a bound \(W \) on the total weight (as before), find a subset \(S \) of the items such that \(\sum_{i \in S} \text{w}_i \leq W \) (as before) and \(\sum_{i \in S} \text{v}_i \) is maximized.

\textbf{e.g.}

\begin{align*}
\text{bar of gold} & \quad \text{large} & \quad \text{large} \\
\text{brick} & \quad \text{large} & \quad \text{small} \\
\text{stack of \$10,000 bills} & \quad \text{small} & \quad \text{large} \\
\text{stack of Canadian Tire bills} & \quad \text{small} & \quad \text{small}
\end{align*}
Algorithm for knapsack is identical to that of subset sum, except for that minor change in the recurrence.

Time and space are again $O(NW)$.

Subtlety:
- N is the number of elements in $\{w_1, w_2, \ldots, w_N\}$.
- W is a number (always one number).

In theoretical computer science, one expresses the time or space used in a computation (algorithm) in terms of the "size" (memory used) of the input.

eg. sorting N numbers

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>\vdots</th>
<th>x_N</th>
</tr>
</thead>
</table>

But for subset sum (or knapsack), we have

The W in $O(NW)$ doesn't refer to the size of the input.

Exercise (Advanced): how to reconcile this?