Suppose you have a time period (e.g. a day) and a resource that needs to be shared during that period. It could be a room that is available for booking, or a special instrument such as MRI scanner.

Suppose there are a set of intervals \([s(i), f(i)]\) which denote the start and finish times.

Two intervals \([s(i), f(i)]\) and \([s(j), f(j)]\) are compatible if they don't overlap. A set of intervals is compatible if each pair of intervals from that set is compatible.

Exercise:
- Given a set of \(N\) intervals, how do you decide if they are compatible?

Let's look at some "greedy" algorithms for choosing a compatible set of intervals. What is a greedy algorithm?

Kleinberg and Tardos: "... builds up a solution in small steps, choosing a decision at each step myopically (short sighted) to optimize some underlying criterion."

Cormen, Leiserson, Rivest (CLR): "... makes the choice that looks best in the moment... it makes a locally optimal choice in the hope that the choice will lead to a globally optimal solution."

Levitin: "... choice must be (1) feasible i.e. satisfy the problem constraints, (2) the best local choice among all feasible choices available at that step, and (3) irrevocable."

For example, Dijkstra/Prim/Kruskal's algorithms are all greedy, and they happen to work -- they find a global optimum solution.

Ford-Fulkerson is NOT greedy, since it allows you to undo (reverse) flow to find a better solution.
Greedy approaches?

Greedy approach number 1:

- start with an empty set \(S \)
- repeat
 - choose the **smallest interval** (smallest \(f(i) - s(i) \) that is compatible with all intervals in \(S \), and add this interval to \(S \))
- until there are no remaining intervals that are compatible with \(S \)

Example where this approach fails to find the optimum solution for Problem 1 (number of intervals) and Problem 2 (total duration):

Greedy approach 2:

- start with an empty set \(S \)
- repeat
 - choose the interval that has the **smallest value of** \(s(i) \), and that is compatible with all intervals in \(S \), and add it to \(S \)
- until there are no remaining intervals that are compatible with \(S \)

Example where this approach fails both for problem 1 (maximize the number of intervals) and problem 2 (maximize the total duration of the intervals):

Greedy approach 3:

- start with an empty set \(S \)
- repeat
 - find the interval with the **smallest value of** \(f(i) \) and that is compatible with all intervals in \(S \), and add it to \(S \)
- until there are no remaining intervals that are compatible with \(S \)

This works for Problem 1 (number of intervals).

Exercises: does it work for Problem 2 also?

Order the intervals by their finishing time
\(f(1) \leq f(2) \leq f(3) \leq \ldots \leq f(N) \)
This takes \(O(N \log N) \) eg. mergesort.

```
interval index
1       f(1)
2       f(2)
3       f(3)
4
5
6       f(6)
```

Greedy approach 3 (Algorithm)

// find a maximal set of intervals \(S \)
\(i = 1 \)
\(S = \{ i \} \)
for \(j = 2 \) to \(N \) {
 if \(s(j) > s(i) \) \{ // compatible?
 add \(j \) to \(S \)
 \(i = j \)
 \}
}\n
```
interval index
1       f(1)
2       f(2)
3       f(3)
4       f(4)
5
6       f(6)
```

\(s(i+1) \)
\(s(j) \)
Claim: Greedy approach 3 (choose based on earliest finish) finds a maximum compatible solution to problem 1 (most intervals)

Proof:
Assume intervals are ordered by their finishing times: $f(1) \leq f(2) \leq f(3) \leq \ldots \leq f(n)$

Let $i_1, i_2, i_3, \ldots, i_r$ be the indices of solution found by algorithm

Let $o_1, o_2, o_3, \ldots, o_m$ be the indices of an optimal solution.

We know $r \leq m$. Show that $r = m$.

Induction step

$f(i_k) \leq f(o_k) \Rightarrow f(i_{k+1}) \leq f(o_{k+1})$

Since algorithm's choice of i_k finishes no later than the optimal O_k, the algorithm has at least as many intervals to choose from for i_{k+1}. In particular, it could choose O_{k+1} since $s(i_k) \leq f(o_k) < s(o_{k+1})$.

Prove then $f(i_n) \leq f(o_n)$ for all $n \leq r$.

Base case:

$f(i_1) \leq f(o_1)$ by definition of algorithm

Induction hypothesis:

$f(i_k) \leq f(o_k)$

In particular, $f(i_r) \leq f(o_r)$.

Next, how do we know $r = m$? If $r < m$ then there would be an interval $[s(o_r), f(o_r)]$ which is impossible since this interval would be chosen by algorithm too.

ASIDE: Another way to think about the compatibility of intervals:
Define a DAG where vertices are intervals and there is an edge from u to v if $f(u) < s(v)$.

Lecture 12

Interval scheduling
- greedy approach
- weighted intervals and dynamic programming approach
What is "dynamic programming"? Term attributed to Bellman (1950's).

CLR: (paraphrase) "Decompose a problem into subproblems. The subproblems are not independent, but rather they share sub-subproblems. The key is to solve each sub-subproblem only once and store these solutions in a table."

We now generalize the interval scheduling problem.

Let interval i have a value V_i.

Choose a set S of compatible intervals that maximizes the sum of values:

$$\text{Opt} = \sum_{i \in S} V_i$$

Claim: earlier problems were special cases.

Problem 1: (number) $V_i \equiv 1$

Problem 2: (total duration) $V_i \equiv f(i) - s(i)$

Greedy 3 won't solve this problem.

We introduce another approach, called "dynamic programming".

$$\{1\}$$
$$\{1, 2\}$$
$$\{1, 2, 3\}$$
$$\{1, 2, 3, 4\}$$
$$\vdots$$
$$\{1, 2, 3, 4, \ldots, N-1\}$$
$$\{1, 2, 3, 4, \ldots, N\}$$ \(< original \ problem$$

Consider solving a sequence of smaller versions of the problem. Again assume interval index is the order of finishing time.

Let $S(i)$ be a set of intervals in maximal solution of the problem when we can use only intervals $\{1, 2, \ldots, i\}$.

\[
\begin{array}{c|c|c|c}
 i & V_i & S(i) & \sum_{i \in S(i)} V_i \\
 \hline
 1 & 4 & 1 & 4 = 4 \\
 2 & 8 & 1, 2 & 4 + 8 = 12 \\
 3 & 2 & 1, 2 & 4 + 8 = 12 \\
 4 & 6 & 1, 2, 4 & 4 + 8 + 6 = 18 \\
 5 & 15 & 1, 2, 4 & 4 + 8 + 6 = 18 \\
\end{array}
\]

For each interval i, let $p[i]$ be the largest index such that $f(p[i]) < s(i)$.

Note: $p[i] < i$

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 \hline
 p[i] & 0 & 1 & 1 & 3 & 1 & 1 & 2 & 3 & 3 & 3 \\
 f(i) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 f(p[i]) & 0 & 1 & 1 & 3 & 1 & 1 & 2 & 3 & 3 & 3 \\
 s(i) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 f(j) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

Claim: If $i \in S(i)$ then $S(i)$ cannot contain j where $p[i] < j < i$.

Proof:

To have $p[i] < j < i$, we would need $f(p[i]) < f(j)$ and $f(j) < s(i)$.

But this would contradict the definition of $p[i]$.
Let the maximum value using intervals \(S(1) \ldots S(j)\) be:
\[
\text{Opt}(i) = \max \{ \text{opt}(i-1), v_i + \text{Opt}(p[i]) \}
\]

\(S(i)\) does not contain \(i\).

\(S(i)\) contains \(i\).

Claim:

\[
\text{Opt}(i) = \max \{ \text{Opt}(i-1), v_i + \text{Opt}(p[i]) \}
\]

\(\text{Opt}(0) = 0\)

for \(i = 1 \to N\),

\[
\text{Opt}(i) = \max \{ \text{Opt}(i-1), v_i + \text{Opt}(p[i]) \}
\]

return \(\text{Opt}(N)\)

Note: Assuming \(p[i]\) has been pre-computed, this algorithm takes \(O(N)\).

What about a recursive algorithm?

\[
\text{ComputeOpt}(i) = \begin{cases}
0 & \text{if } n == 0 \\
0 & \text{return } \\
\text{else} & \text{return } \max \{ \text{ComputeOpt}(i-1), v_i + \text{ComputeOpt}(p[i]) \}
\end{cases}
\]

Analogy: Fibonacci

\[
\begin{array}{c|cccccc}
F(0) = 0 \\
F(1) = 1 \\
F(n+1) = F(n) + F(n-1)
\end{array}
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F(n))</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

Suppose you try to compute \(F(N)\) using recursion, where \(N\) is large.

Call Tree for recursive Fibonacci

Note the redundant computation!
We can use recursion for Fibonacci but we must be careful to avoid redundant computation.

Use a global array F[0,...,N]

F[0] = 0, F[1] = 1
F[i] = F[i−2] for all i = 2,...,N

Fibonacci(k) {
 if k == 0 or k == 1 return F[k]
 else {
 if F[k−1] < 0
 F[k−1] = Fibonacci(k−1)
 if F[k−2] < 0
 F[k−2] = Fibonacci(k−2)
 return F[k−1] + F[k−2]
 }
}

Memoization

Save values that have already been computed so that you don’t have to compute them again.

How do we apply this to our weighted interval scheduling problem?

\[
\text{Opt}[i] = \sum \nu_j
\]

\[
\nu_j \in S(i)
\]

\[
\text{Opt}[0] = 0
\]

for all \(i \in \{1,2,\ldots,N\} \)

Opt[i] = \(-1\) // stores maximum value

ComputeOpt(n) {
 if n == 0, return 0
 else if \(\text{Opt}[n] \geq 0 \), return \(\text{Opt}[n] \)
 else \(\text{Opt}[n] = \max \{ \text{ComputeOpt}(n−1), \nu_n + \text{ComputeOpt}(p[n]) \} \)
 return \(\text{Opt}[n] \)

What is \(O(\cdot) \) running time?

Each call to ComputeOpt() either performs a constant number of operations and then returns, or else sets one value of Opt[] (and performs two calls to ComputeOpt()).

Since each value of Opt[] is set only once, the time required is \(O(N) \), same as iterative solution.

[Don’t forget about \(O(N \log N) \) needed to sort the intervals by finishing time.]

Q: Is this a greedy algorithm?
A: No. Although Opt[i] increases as \(i \) increases, the set \(S(i) \) does not necessarily grow as \(i \) increases.

<table>
<thead>
<tr>
<th>i</th>
<th>(\nu_i)</th>
<th>(S(i))</th>
<th>(S(C))</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1,2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1,2,4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1,2,4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>1,5</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1,5</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

We could compute \(S(n) \) while Opt[] is being computed, or do it afterwards as follows.

find \(S(n) \) {
 if \(n > 0 \) {
 if \(\text{Opt}[n−1] = \text{Opt}[n] \)
 // \(S(n) \) doesn’t contain \(n \).
 return \(\text{findS}(n−1) \)
 else {
 return \(S(n) \cup \text{findS}(p[n]) \)
 }
 } else return \{ \} // the empty set
}

my apologies for the notation - curly braces are used in two different ways