
COMP 250 Winter 2022 Exercises - recursion

Questions

1. (a) Suppose you wish to “count down” the numbers from a given n down to 1. You can use
a while loop to do this:

countdown(n){

while (n > 0) {

print n

n-- }

}

Write a recursive version of this algorithm.

(b) Now write a recursive countUp(n) algorithm which counts up from 1 to n.

2. Here is an alternative reverse method for the SLinkedList<E> class which reverses the order
of nodes in a singly linked list. (See online code from linked list exercises). The method calls
a recursive helper method reverseRecursiveHelper which does most of the work. Write
this helper method. If your solution is different from the given one, then you should add your
method to the SLinkedList class and test it!

public void reverseRecursive(){

SNode<E> oldHead = head;

reverseRecursiveHelper(head);

head = tail; // swap head and tail

tail = oldHead; //

}

3. Consider a simplified version of the game “20 questions”, in which one person has a number
in mind from 0 to 220 − 1. You can easily find that number with your twenty questions e.g.
by asking for the ith bit of the number. (This is essentially binary search.)

Here is a slightly different game. Suppose I am thinking of a positive integer n but it can
be any positive integer. It is easy for you figure out the number using n questions, namely
question i is “is it the number i ?”. Give a faster algorithm, namely one that runs in time
proportional to log n.

Hint: you may have the intuition that binary search would be good here. The trouble is that
you don’t know in advance how large the number might be.

4. Suppose that you are given an array of n different numbers that strictly increase from index
0 to index m, and strictly decrease from index m to index n − 1, where n is known but m
is unknown. Note that there is a unique largest number in such a list, and it is at index m.
Here are a few examples.

last updated: 12th Mar, 2022 at 13:16 1 ©Michael Langer

COMP 250 Winter 2022 Exercises - recursion

m n

--- ---

[3, 5, 17, 18, 21, 6] 4 6

[-3, 5] 1 2

[12, 7, 4, 2, -5] 0 5

Provide the missing pseudocode below of a recursive algorithm that returns the index m of the
largest number in the array, in time proportional to log n.

The algorithm is initially called with low = 0, high = n-1.

findM(a, low, high){ // array is a[], assume low <= high

if (low == high)

return low

else{

// ADD YOUR CODE HERE (AND ONLY HERE)

}

}

5. Suppose you sort a list of numbers using the mergesort algorithm.

Show the order of the list elements after all merges of lists of size 1 to 2 have been completed,
and then after all merges of lists of size 2 to lists of size 4 have been completed:

(6 , 5 , 2 , 8 , 4 , 3 , 7 , 1) original list, n=8

(, , , , , , ,) merges from n=1 to n=2 completed

(, , , , , , ,) merges from n=2 to n=4 completed

(1 , 2 , 3 , 4 , 5 , 6 , 7 , 8) final sorted list

6. Recall the Tower of Hanoi algorithm.

tower(n, start, finish, other){

if n==1

move from start to finish

else {

tower(n-1, start, other, finish)

move from start to finish

tower(n-1, other, finish, start)

}

}

Suppose we call tower(5, 1, 3, 2). What are the parameters of the function the first time
a tower() call returns to its caller?

Hint: consider the call stack which keeps track of the sequence of recursive calls. When the
call stack is first popped, what were the parameters of tower() ?

last updated: 12th Mar, 2022 at 13:16 2 ©Michael Langer

COMP 250 Winter 2022 Exercises - recursion

Answers

1. (a) countdown(n){

if (n > 0) {

print n

countdown(n - 1)

}

}

(b) countUp(n){

if (n > 0) {

countUp(n - 1)

print n

}

}

Did you get the order of the instructions correct?

2. The following recursively reverses the list from head.next, and then cleans up the references
that involve the original head. Also note the base case that the list has just one element.

private void reverseRecursiveHelper(SNode<E> head){

if (head.next != null){

reverseRecursiveHelper(head.next);

head.next.next = head;

head.next = null;

}

}

3. The idea is to guess increasing powers of 2 until the power of 2 is bigger than the number.
Then do a binary search (backwards). For example, suppose n = 51. We would guess “Is
n < 1? Is n < 2 ? Is n < 4 ? Is n < 8 ? Is n < 64 ? The answers would be no, no, no,
no, ... yes. It would take about log n guesses to reach that point.

Then, we could do a binary search for n. We know 32 <= n < 64 and so we could ask “Is
n ≤ mid? ” where mid = (32 + 64)/2 and keep going, shrinking the interval [low,high] from
[32,64] until low == high. Then we’re done. In general, it would take another log2 n guesses
to narrow down to the exact value of n.

last updated: 12th Mar, 2022 at 13:16 3 ©Michael Langer

COMP 250 Winter 2022 Exercises - recursion

4. There are several solutions.

// -------- SOLUTION 1 ------

if low == high

return a[low]

else {

mid = (low + high)/2

if (a[mid] < a[mid+1]){

return findM(a, mid+1, high)

else

return findM(a, low, mid)

}

// -------- SOLUTION 2 ------

if (high-low == 1){

if (a[low] < a[high])

return high

else

return low

}

else{

mid = (low + high)/2

if (a[mid-1] < a[mid]){

return findM(a, mid, high)

else

return findM(a, low, mid)

}

// -------- SOLUTION 3 ------

if (high-low == 1){

if (a[low] < a[high])

return high

else

return low

}

else{

mid = (low + high)/2

if (a[mid] < a[mid+1]){

return findM(a, mid+1, high)

else

return findM(a, low, mid)

}

last updated: 12th Mar, 2022 at 13:16 4 ©Michael Langer

COMP 250 Winter 2022 Exercises - recursion

5. Below I have grouped into four lists of size two, and then these four lists of size two are merged
into two lists of size four.

(5,6, 2,8, 3,4, 1,7) after merging lists of size 1 to lists of size 2

(2,5,6,8, 1,3,4,7) after merging lists of size 2 to lists of size 4

6. Here is the sequence of calls. Think of the call stack growing downwards here. The last call
below will be the first call that returns, which is what the question was asking.

tower(5, 1, 3, 2)

tower(4, 1, 2, 3)

tower(3, 1, 3, 2)

tower(2, 1, 2, 3)

tower(1, 1, 3, 2) <- top of stack (and the first to return i.e. be popped)

last updated: 12th Mar, 2022 at 13:16 5 ©Michael Langer

