Questions

1. True or false? Prove it.
 (a) \(n! \) is \(O((n + 2)!) \).
 (b) \((n + 2)! \) is \(O(n!) \).
 (c) \(9^n \) is \(O(12^n) \).
 (d) \(12^n \) is \(O(9^n) \).

2. Let
 \[t(n) = \sum_{i=0}^{n} 3^i. \]
 Show that \(t(n) \) is \(O(3^n) \).

3. In the lecture on mathematical induction, I showed that for all \(n \), \(\text{Fib}(n) < 2^n \). Thus, \(\text{Fib}(n) \) is \(O(2^n) \).
 (a) Use mathematical induction to prove a tighter bound, namely \(\text{Fib}(n) \) is \(O\left((\frac{7}{4})^n\right)\).
 (b) Use mathematical induction to prove a lower bound: \(\text{Fib}(n) \in \Omega\left((\frac{3}{2})^n\right) \).

4. (a) If \(t(n) \in O(g(n)) \), may we conclude that \(g(n) \in \Omega(t(n)) \)?
 (b) If \(t(n) \in \Omega(g(n)) \), may we conclude that \(g(n) \in O(t(n)) \)?

5. Show \(2^n \) is \(O(n!) \).

6. Let \(t(n) = n \log n \). Prove that \(t(n) \) is \(\Omega(\log(n!)) \).

7. Prove that \(t(n) \) is \(\Omega(n^2) \), where
 \[t(n) = \frac{n^2}{2} + 3 \log n - 40. \]

8. Show that \(t(n) \) is \(\Omega(g(n)) \), where
 \[t(n) = \frac{1}{5} \log(n - 8) \]
 \[g(n) = \log(n). \]

9. Let \(t(n) = (n + 8)^{1.3} + 3n + 5 \). Prove that \(t(n) \) is \(O(n^{1.3}) \).

10. Show that \(\sqrt{31n + 12n \log n + 57} \) is \(O(\sqrt{n} \log n) \).
11. Suppose you have three $n \times n$ arrays, call them $a[][]$, $b[][]$, and $c[][]$. Consider the following.

```java
for i = 1 to n
    for j = 1 to n
        for k = 1 to n{
            c[i][j] = a[i][k] * b[k][j];
        }
    }
}
```

(Those you familiar with linear algebra will recognize this as matrix multiplication.)

Give a tight big O bound on this algorithm as a function of n.

12. If $f(n)$ is $O(g(n))$, can we conclude that $2f(n)$ is $O(2^g(n))$?

13. Is $t(n) = \frac{1}{n}$ in $\Omega(1)$?

14. Let $t(n) = 5n^2 + 3n + 4$.

 (a) Use a limit argument to show that $t(n)$ is $O(n^2)$.
 (b) Find constants c, n_0 that satisfy the definition of big O for this example.

15. Give a tight big O bound on

 $$t(n) = \sqrt{n^2 + 100n} - n.$$

16. What is the big O and big Omega relationship between $t(n) = n^a$ and $g(n) = n^b$, where $0 < a < b$?

17. What is the big O and big Omega relationship between $t(n) = \log_a n$ and $g(n) = \log_b n$, where $0 < a < b$?

18. Let $t(n) = \log n$ (base 2). Show that $t(n)$ is $O(n^a)$ for any $a > 0$. Note this holds even if a is very small. That is, log grows very slowly!
Answers

1. (a) (True) Applying the formal definition, we want to know if

\[n! < c(n + 2)(n + 1) \cdot n! \]

for \(n \) sufficiently large. Dividing by \(n! \) gives

\[1 < c(n + 2)(n + 1). \]

So let \(c = 1 \) and \(n_0 = 1 \).

(b) (False) Here we need to find a \(c, n_0 > 0 \) such that

\[(n + 2)(n + 1) \cdot n! < c(n!) \]

for all \(n > n_0 \). Choose any \(c, n_0 \). Then, dividing by \(n! \), we would now need to show that \((n + 1)(n + 2) < c \) for all \(n \geq n_0 \). But this is clearly false, since the left side grows without bound as \(n \) grows. Thus, \((n + 2)! \) is not \(O(n!) \).

(c) (True) Since \(9 < 12 \), it follows that \(9^n < 12^n \) and so \(c = 1 \) and \(n_0 = 1 \) does the job.

(d) (False) We want to show there exists \(c, n_0 > 0 \) such that \(12^n < c9^n \) for all \(n \geq n_0 \). But

\[12^n < c9^n \iff \left(\frac{12}{9} \right)^n < c \]

But this inequality cannot be true for all \(n \geq n_0 \), since the left side grows without bound. Thus, \(12^n \) cannot be \(O(9^n) \).

2. Recall the formula for a geometric series

\[\sum_{i=0}^{n} a^i = \frac{a^{n+1} - 1}{a - 1}. \]

Then,

\[\sum_{i=1}^{n} 3^i = \frac{3^{n+1} - 1}{3 - 1} = 3^{n+1} - \frac{1}{2} \]

which is \(O(3^n) \), i.e. take \(c = \frac{3}{2} \) and \(n_0 = 1 \).

3. (a) We need to find an \(n_0 \) and \(c \) such that, for all \(n \geq n_0 \), \(F(n) < c\left(\frac{7}{4} \right)^n \).

Try \(c = 1 \). The base case is trivial since \(F(0) = 0 < \left(\frac{7}{4} \right)^0 \) and \(F(1) = 1 < \frac{7}{4} \). So let’s hypothesize that \(F(n) < \left(\frac{7}{4} \right)^n \) for all \(n \) up to some \(k \geq 1 \) and see if it follows for \(n = k + 1 \).

\[F(k + 1) = F(k) + F(k - 1) \]

\[< \left(\frac{7}{4} \right)^k + \left(\frac{7}{4} \right)^{k-1} \text{ by the induction hypothesis,} \]

\[= \left(\frac{7}{4} + 1 \right)\left(\frac{7}{4} \right)^{k-1} \]
But it is easy to verify that \(\frac{7}{4} + 1 < \left(\frac{7}{4} \right)^2 \) and so (from the induction hypothesis) we get

\[
F(k + 1) < \left(\frac{7}{4} \right)^2 \left(\frac{7}{4} \right)^{k-1} = \left(\frac{7}{4} \right)^{k+1}.
\]

This proves the induction step, and so we are done.

(b) We need to find an \(n_0 \) and \(c \) such that \(F(n) > c \left(\frac{3}{2} \right)^n \) for all \(n \geq n_0 \).

Let’s first establish a base case. We can’t have a base case for \(n = 0 \) since \(F(0) = 0 \) and so it will be impossible for \(F(0) > c \left(\frac{3}{2} \right)^0 \) for \(c > 0 \). Instead, we try to find a \(c \) and use the base case(s) \(n = 1, 2 \). If we let \(c = \left(\frac{3}{2} \right)^2 \), then indeed we have \(F(n) > c \left(\frac{3}{2} \right)^n \) for \(n = 1, 2 \). So let’s try using that \(c \) and proving the induction step.

We assume the induction hypothesis, namely we assume that \(F(n) > c \left(\frac{3}{2} \right)^n \) for \(n = k - 1, k \). We want to show it follows that \(F(k + 1) > c \left(\frac{3}{2} \right)^{k+1} \).

\[
F(k + 1) = F(k) + F(k - 1) > c \left(\frac{3}{2} \right)^k + c \left(\frac{3}{2} \right)^{k-1} \text{ by induction hypothesis} = c \left(\frac{3}{2} \right)^2 \left(\frac{3}{2} \right)^{k-1} > c \left(\frac{3}{2} \right)^2 \left(\frac{3}{2} \right)^{k-1}, \text{ since } \frac{5}{2} > \frac{9}{4} = c \left(\frac{3}{2} \right)^{k+1}
\]

Thus, both the base case and induction step are proved and so we are done.

4. (a) The answer is yes, and here is the proof. If \(t(n) \in O(g(n)) \), then there exists a constant \(c \) and \(n_0 \) such that, for all \(n \geq n_0 \),

\[
t(n) \leq cg(n)
\]

or equivalently

\[
g(n) \geq \frac{1}{c} t(n).
\]

Hence the constants \(n_0 \) and \(\frac{1}{c} \) exist for \(g(n) \) is \(\Omega(t(n)) \).

(b) The answer is yes, and the proof is exactly as in the previous question. If \(t(n) \in \Omega(g(n)) \), then there exists a constant \(c \) and \(n_0 \) such that, for all \(n \geq n_0 \),

\[
t(n) \geq cg(n)
\]

or equivalently

\[
g(n) \leq \frac{1}{c} t(n).
\]

Hence the constants \(n_0 \) and \(\frac{1}{c} \) exist for \(g(n) \) is \(O(t(n)) \).
5. We want to show that there exist two constants \(c > 0 \) and \(n_0 > 0 \) such that, for all \(n \geq n_0 \),
\[
2^n \leq c \, n!
\]
or, equivalently,
\[
\frac{2}{n} \cdot \frac{2}{n-1} \cdot \frac{2}{n-2} \cdots \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{2}{1} \leq c.
\]
On the left side, the numerator and denominator have \(n \) terms each. We pair them up and note that numerator terms are all less than or equal to their corresponding denominator terms, except for the last pair \(\left(\frac{2}{1} \right) \). We take the last pair to the other side,
\[
\frac{2}{n} \cdot \frac{2}{n-1} \cdot \frac{2}{n-2} \cdots \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{2}{1} \leq c
\]
The terms on the left side are for \(n \geq 2 \). If \(n = 1 \), then the left side is 1.
So, if we let \(c = 2 \) and \(n_0 = 1 \), then this inequality indeed is true for all \(n \geq n_0 \) since the right side is 1 and the left side is a product of terms that are each less than or equal to 1.

6. We need to show there exist two positive constants \(c, n_0 \) such that, for all \(n \geq n_0 \),
\[
n \log n > c \log(n!).
\]
Try \(c = 1 \). Since \(n \log n = \log(n^n) \), and since \(\log x \) is monotonically increasing, it is enough for us to show that there exist \(n_0 \) such that, for all \(n \geq n_0 \),
\[
n^n > n!
\]
But it is easy to see that \(\frac{n^n}{n!} > 1 \) since both numerator and denominator have \(n \) terms each, and if we take corresponding terms, we notice that the ratio is greater than or equal to 1 for each. Thus, the product of the ratios is greater than or equal to 1.

7. Here are two ways to do it. The first way:
\[
t(n) = \frac{n^2}{2} + 3 \log n - 40
\]
\[
\geq \frac{n^2}{2} - 40 \text{ for } n \geq 1
\]
Since we are looking for a lower bound, let’s try a constant \(c < \frac{1}{2} \), specifically take \(c = \frac{1}{4} \). We want to find an \(n_0 \) such that, for all \(n \geq n_0 \),
\[
\frac{n^2}{2} - 40 > \frac{n}{4}
\]
or equivalently
\[
\frac{n^2}{4} > 40
\]
We see \(n_0 = 13 \) does the job, since \(13^2 = 169 > 160 = 4 \times 40 \).
The second way to do it is to guess \(c = \frac{1}{2} \) and then find an \(n_0 \) such that \(3 \log n - 40 > 0 \) for all \(n > n_0 \). Choosing \(n_0 = 2^{40} \) does the job.
8. We are looking for a lower bound so let’s try some constant $c < \frac{1}{5}$. Let’s try $c = \frac{1}{10}$.

$$\frac{1}{5} \log(n - 8) > \frac{1}{10} \log n$$

$$\iff \log(n - 8) > \frac{1}{2} \log n$$

$$\iff \log(n - 8) > \log \sqrt{n}$$

$$\iff n - 8 > \sqrt{n}$$

But the last inequality is true if n is sufficiently large, since n grows faster than \sqrt{n}. We still need to choose an n_0. The inequality holds for $n_0 = 16$ since $8 > 4$. Moreover, dividing both sides by \sqrt{n} gives

$$\sqrt{n} > 1 + \frac{8}{\sqrt{n}}$$

which holds for all $n > 16$ since the left side is increasing and the right side is decreasing. So, $n_0 = 16$ does the job (and $c = \frac{1}{10}$).

9. We need to show there exists two positive constants c, n_0 such that, for all $n \geq n_0$,

$$(n + 8)^{1.3} + 3n + 5 < cn^{1.3}.$$

$$(n + 8)^{1.3} + 3n + 5 < (2n)^{1.3} + 3n + 5, \text{ if } n \geq 8$$

$$< 4n^{1.3} + 3n^{1.3} + 5n^{1.3}, \text{ since } 2^{1.3} < 2^2 = 4$$

$$= 12n^{1.3}$$

So, take $n_0 = 8$ and $c = 12$.

10. We want to show there exists a $c > 0$ and $n_0 \geq 1$ such that, for all $n \geq n_0$,

$$\sqrt{31n + 12n \log n + 57} < c\sqrt{n \log n}.$$

But

$$\sqrt{31n + 12n \log n + 57} < \sqrt{31n \log n + 12n \log n + 57n \log n}, \text{ when } n > 2$$

$$= \sqrt{100n \log n}$$

$$= 10 \sqrt{n \log n}$$

$$< 10\sqrt{n \log n}, \text{ when } n > 2$$

where the last line follows from the fact that $\sqrt{x} < x$ when $x > 1$. So, take $n_0 = 3$ and $c = 10$.

11. The algorithm is $O(n^3)$. Why? For each value of i, we run the two inner loops (j and k). There are n values of i, so the number of steps is n times the number of steps in the two inner loops. The two inner loops take n^2 steps (by similar reasoning, namely for each value of j, we run through all n values of k). Thus, the number of steps is $O(n * n^2) = O(n^3)$.

last updated: 21st Oct, 2017 at 10:50 6
12. No. Take \(f(n) = 2n \) and \(g(n) = n \). However, \(2^{2n} = 4^n \) which is not \(O(2^n) \).

13. The definition of \(\Omega() \) requires \(c > 0 \). However, for any such \(c \) that we choose, there will be an \(n_0 \) such that \(t(n) < c \) when \(n \geq n_0 \), namely \(n_0 = \frac{1}{c} \). The idea here is that \(t(n) \) is not asymptotically bounded below by a strictly positive constant.

14. (a) When we compute the limit, we get:

\[
\lim_{n \to \infty} \frac{5n^2 + 3n + 4}{n^2} = 5
\]

So, the third limit rule gives us that \(t(n) \) is \(\Theta(g(n)) \), and thus in particular \(t(n) \) is \(O(g(n)) \).

[ASIDE: You might be thinking you would use the first limit rule using limits which said that if \(\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0 \) then \(t(n) \) is \(O(g(n)) \). However, that rule doesn’t apply here.]

(b) Since the limit is 5, you might be tempted to choose \(c = 5 \) as your constant. However, if you plug \(c = 5 \) into the inequality \(t(n) \leq cn^2 \), you see it never is true.

As an alternative, find an upper bound on \(t(n) \) as follows:

\[
5n^2 + 3n + 4 < 5n^2 + 3n^2 + 4n^2 = 12n^2
\]

and so we can take \(c = 12 \) and \(n_0 = 1 \).

15. You might guess the tight bound is \(O(n) \) and you can verify it using a limit argument:

\[
\lim_{n \to \infty} \frac{t(n)}{n} = \lim_{n \to \infty} \frac{\sqrt{n^2 + 100n} - n}{n} = \lim_{n \to \infty} \sqrt{1 + \frac{100}{n}} - 1 = 0.
\]

However, is this as tight as we can get? Nope. In fact, \(t(n) \) is \(O(1) \). This is a bit tricky to prove using limits, so let’s instead do it by finding a convenient upper bound.

\[
t(n) = \sqrt{n^2 + 100n} - n
\leq \sqrt{n^2 + 100n + 2500} - n
= \sqrt{(n + 50)^2} - n
= n + 50 - n
= 50
\]

So, \(t(n) \) is bounded above by a constant for all \(n \), which means \(t(n) \) is \(O(1) \).

16. Since \(\lim \frac{n^a}{n^b} = \lim \frac{1}{n^{b-a}} = 0 \), we have that \(n^a \) is \(O(n^b) \) but \(n^a \) is not \(\Omega(n^b) \).

17. Since

\[
\log_a n = \log_a b \ast \log_b n
\]

they differ by a constant factor only, and so they are in the same \(\Theta \) class.

18. From the previous question, we know that \(\log n \) is in the same \(\Theta \) class as \(\ln n \), namely \(\log \) base \(e \). Recall from Calculus that \(\frac{d}{dx} \ln x = \frac{1}{x} \), and applying l’Hopitals rule for limits:

\[
\lim_{n \to \infty} \frac{\ln n}{n^a} = \lim_{n \to \infty} \frac{\frac{1}{n}}{an^{a-1}} = \lim_{n \to \infty} \frac{1}{an^a} = 0, \text{ since } a > 0
\]