Questions

1. Use mathematical induction to prove that, for any $n\geq 1$

$$\sum_{i=0}^{n-1} x^i = \frac{x^n - 1}{x - 1}.$$

2. Use mathematical induction to prove that, for all $n \ge 1$,

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$
.

3. Use mathematical induction to prove that, for all $n \ge 1$,

$$1 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2.$$

Answers

1. The base case is easy. Substitute n = 1 and we get 1 = 1 which is true. For the induction step, we *hypothesize* that

$$\sum_{i=0}^{k-1} x^i = \frac{x^k - 1}{x - 1}$$

for $k \ge 0$, and we want to show it follows from this hypothesis that

$$\sum_{i=0}^{k} x^{i} = \frac{x^{k+1} - 1}{x - 1}.$$

Take the left side of the last equation, and rewrite it:

$$\sum_{i=0}^{k} x^{i} = \sum_{i=0}^{k-1} x^{i} + x^{k}$$

= $\frac{x^{k} - 1}{x - 1} + x^{k}$, by induction hypothesis
= $\frac{x^{k} - 1}{x - 1} + x^{k} (\frac{x - 1}{x - 1})$
= $\frac{x^{k+1} - 1}{x - 1}$

which is what we wanted to show.

2. The base case of $n_0 = 1$ is obvious, since there is only a single term on the left hand side, i.e. $1 = 1^2$. The induction hypothesis is the statement P(k):

$$P(k) \equiv "1 + 3 + 5 + \dots + (2k - 1) = k^2 "$$

To prove the induction step, we show that if P(k) is true, then P(k+1) must also be true. As usual, we take the left side of the equation of P(k+1):

$$\sum_{i=1}^{k+1} (2i-1) = 2(k+1) - 1 + \sum_{i=1}^{k} (2i-1)$$

= 2(k+1) - 1 + k², by the induction hypothesis
= 2k + 1 + k²
= (k+1)².

Thus, the induction step is also proved, and so we're done.

last updated: 12^{th} Mar, 2022 at 12:49

3. The base case is trivially obvious since $1^3 = 1^2$. To prove the induction step, we write

$$1 + 2^{3} + 3^{3} + \dots + k + (k + 1)^{3}$$

= $(1 + 2 + \dots + k)^{2} + (k + 1)^{3}$ by the induction hypothesis
= $(\frac{k(k+1)}{2})^{2} + (k + 1)^{3}$
= $(\frac{k^{2}}{4} + (k + 1)) * (k + 1)^{2}$
= $\frac{1}{4}(k^{2} + 4k + 4) * (k + 1)^{2}$
= $\frac{1}{4}(k + 2)^{2} * (k + 1)^{2}$
= $\{\frac{1}{2}(k + 2)(k + 1)\}^{2}$
= $(1 + 2 + 3 + \dots + k + (k + 1))^{2}$.