Questions

1. Use mathematical induction to prove that, for any $n \geq 1$

$$
\sum_{i=0}^{n-1} x^{i}=\frac{x^{n}-1}{x-1}
$$

2. Use mathematical induction to prove that, for all $n \geq 1$,

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

3. Use mathematical induction to prove that, for all $n \geq 1$,

$$
1+2^{3}+3^{3}+\cdots+n^{3}=(1+2+3+\cdots+n)^{2} .
$$

Answers

1. The base case is easy. Substitute $n=1$ and we get $1=1$ which is true.

For the induction step, we hypothesize that

$$
\sum_{i=0}^{k-1} x^{i}=\frac{x^{k}-1}{x-1}
$$

for $k \geq 0$, and we want to show it follows from this hypothesis that

$$
\sum_{i=0}^{k} x^{i}=\frac{x^{k+1}-1}{x-1}
$$

Take the left side of the last equation, and rewrite it:

$$
\begin{aligned}
\sum_{i=0}^{k} x^{i} & =\sum_{i=0}^{k-1} x^{i}+x^{k} \\
& =\frac{x^{k}-1}{x-1}+x^{k}, \quad \text { by induction hypothesis } \\
& =\frac{x^{k}-1}{x-1}+x^{k}\left(\frac{x-1}{x-1}\right) \\
& =\frac{x^{k+1}-1}{x-1}
\end{aligned}
$$

which is what we wanted to show.
2. The base case of $n_{0}=1$ is obvious, since there is only a single term on the left hand side, i.e. $1=1^{2}$. The induction hypothesis is the statement $P(k)$:

$$
P(k) \equiv " 1+3+5+\cdots+(2 k-1)=k^{2} "
$$

To prove the induction step, we show that if $P(k)$ is true, then $P(k+1)$ must also be true. As usual, we take the left side of the equation of $P(k+1)$:

$$
\begin{aligned}
\sum_{i=1}^{k+1}(2 i-1) & =2(k+1)-1+\sum_{i=1}^{k}(2 i-1) \\
& =2(k+1)-1+k^{2}, \quad \text { by the induction hypothesis } \\
& =2 k+1+k^{2} \\
& =(k+1)^{2}
\end{aligned}
$$

Thus, the induction step is also proved, and so we're done.
3. The base case is trivially obvious since $1^{3}=1^{2}$.

To prove the induction step, we write

$$
\begin{aligned}
& 1+2^{3}+3^{3}+\cdots+k+(k+1)^{3} \\
= & (1+2+\cdots+k)^{2}+(k+1)^{3} \quad \text { by the induction hypothesis } \\
= & \left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} \\
= & \left(\frac{k^{2}}{4}+(k+1)\right) *(k+1)^{2} \\
= & \frac{1}{4}\left(k^{2}+4 k+4\right) *(k+1)^{2} \\
= & \frac{1}{4}(k+2)^{2} *(k+1)^{2} \\
= & \left\{\frac{1}{2}(k+2)(k+1)\right\}^{2} \\
= & (1+2+3+\cdots+k+(k+1))^{2} .
\end{aligned}
$$

