Questions

1. Use mathematical induction to prove that, for any $n \geq 1$

$$\sum_{i=0}^{n-1} x^i = \frac{x^n - 1}{x - 1}.$$

2. Use mathematical induction to prove that, for all $n \geq 1$,

$$1 + 3 + 5 + \cdots + (2n - 1) = n^2.$$

3. Use mathematical induction to prove that, for all $n \geq 1$,

$$1 + 2^3 + 3^3 + \cdots + n^3 = (1 + 2 + 3 + \cdots + n)^2.$$
Answers

1. The base case is easy. Substitute \(n = 1 \) and we get \(1 = 1 \) which is true.

 For the induction step, we hypothesize that
 \[
 \sum_{i=0}^{k-1} x^i = \frac{x^k - 1}{x - 1}
 \]
 for \(k \geq 0 \), and we want to show it follows from this hypothesis that
 \[
 \sum_{i=0}^{k} x^i = \frac{x^{k+1} - 1}{x - 1}.
 \]

 Take the left side of the last equation, and rewrite it:
 \[
 \sum_{i=0}^{k} x^i = \sum_{i=0}^{k-1} x^i + x^k
 \]
 \[
 = \frac{x^k - 1}{x - 1} + x^k, \quad \text{by induction hypothesis}
 \]
 \[
 = \frac{x^k - 1}{x - 1} + x^k \left(\frac{x - 1}{x - 1}\right)
 \]
 \[
 = \frac{x^{k+1} - 1}{x - 1}
 \]
 which is what we wanted to show.

2. The base case of \(n_0 = 1 \) is obvious, since there is only a single term on the left hand side, i.e. \(1 = 1^2 \). The induction hypothesis is the statement \(P(k) \):
 \[
 P(k) \equiv "1 + 3 + 5 + \cdots + (2k - 1) = k^2 "
 \]

 To prove the induction step, we show that if \(P(k) \) is true, then \(P(k + 1) \) must also be true. As usual, we take the left side of the equation of \(P(k + 1) \):
 \[
 \sum_{i=1}^{k+1} (2i - 1) = 2(k + 1) - 1 + \sum_{i=1}^{k} (2i - 1)
 \]
 \[
 = 2(k + 1) - 1 + k^2, \quad \text{by the induction hypothesis}
 \]
 \[
 = 2k + 1 + k^2
 \]
 \[
 = (k + 1)^2.
 \]

 Thus, the induction step is also proved, and so we’re done.
3. The base case is trivially obvious since $1^3 = 1^2$.

To prove the induction step, we write

\[1 + 2^3 + 3^3 + \cdots + k + (k + 1)^3 \]
\[= (1 + 2 + \cdots + k)^2 + (k + 1)^3 \] by the induction hypothesis
\[= \left(\frac{k(k + 1)}{2} \right)^2 + (k + 1)^3 \]
\[= \left(\frac{k^2}{4} + (k + 1) \right) \cdot (k + 1)^2 \]
\[= \frac{1}{4} (k^2 + 4k + 4) \cdot (k + 1)^2 \]
\[= \frac{1}{4} (k + 2)^2 \cdot (k + 1)^2 \]
\[= \left\{ \frac{1}{2} (k + 2)(k + 1) \right\}^2 \]
\[= (1 + 2 + 3 + \cdots + k + (k + 1))^2. \]