
COMP 250 Fall 2021 Exercises - stacks, queues

Questions

1. Use a stack to test for balanced parentheses, when scanning the following expressions. Your
solution should show the state of the stack each time it is modified. The “state of the stack”
must indicate which is the top element.

Only consider the parentheses [,],(,),{,} . Ignore the variables and operators.

(a) [a + { b / (c - d) + e / (f + g) } - h]

(b) [a { b + [c (d + e) - f] + g }

2. Suppose you have a stack in which the values 1 through 5 must be pushed on the stack in
that order, but that an item on the stack can be popped at any time. Give a sequence of push
and pop operations such that the values are popped in the following order:

(a) 2, 4, 5, 3, 1

(b) 1, 5, 4, 2, 3

(c) 1, 3, 5, 4, 2

It might not be possible in each case.

3. (a) Suppose you have three stacks s1, s2, s3 with starting configuration shown on the left,
and finishing condition shown on the right. Give a sequence of push and pop operations
that take you from start to finish. For example, to pop the top element of s1 and push
it onto s3, you would write s3.push(s1.pop()).

start finish

A A

B B

C D

D C

--- --- --- --- --- ---

s1 s2 s3 s1 s2 s3

(b) Same question, but now suppose the finish configuration on s3 is BDAC (with B on top) ?

4. Consider the following sequence of stack commands:

push(a), push(b), push(c), pop(), push(d), push(e), pop(), pop(), pop(), pop().

(a) What is the order in which the elements are popped ? (Give a list and indicate which
was popped first.)

(b) Change the position of the pop() commands in the above sequence so that the items are
popped in the following order: b,d,c,a,e.

You are not allowed to change the ordering of the push commands.

last updated: 18th Oct, 2021 at 16:48 1 ©Michael Langer

COMP 250 Fall 2021 Exercises - stacks, queues

5. Given a queue of integers, how would you reverse the order of the first k elements, leaving the
other elements in the same relative order? For example: if k=4 and queue is [10, 20, 30, 40,
50, 60, 70, 80, 90], then, the output should be [40, 30, 20, 10, 50, 60, 70, 80, 90].

Assume that the size of queue is denoted by size(q) and it is available to you. Also, assume
you can perform usual queue operations on your queue. Finally, and very important, assume
you have access to a stack and its usual operations of push and pop.

I discussed the next question in the queue lecture (slides only).

6. Assume you have a stack with operations: push(), pop(), isEmpty(). How would you
use these stack operations to simulate a queue, in particular, the operations enqueue() and
dequeue()?

One solution was presented in the lecture. See if you can come up with another.

7. Assume you have a queue with operations: enqueue(), dequeue(), isEmpty(). How would
you use the queue methods to simulate a stack, in particular, push() and pop() ?

Hint: use two queues, one of which is the main one and one is temporary.

last updated: 18th Oct, 2021 at 16:48 2 ©Michael Langer

COMP 250 Fall 2021 Exercises - stacks, queues

Answers

1. (a) - means empty stack

[

[{

[{(TOP OF STACK IS ON THE RIGHT

[{

[{(

[{

[

- empty stack, so brackets match

(b) -

[

[{

[{[TOP OF STACK IS ON THE RIGHT

[{[(

[{[

[{

[stack not empty, so brackets don’t match

2.

24531 15423 13542

push 1 push 1 push 1

push 2 pop pop

pop push 2 push 2

push 3 push 3 push 3

push 4 push 4 pop

pop push 5 push 4

push 5 pop push 5

pop pop pop

pop x pop

pop (not possible) pop

last updated: 18th Oct, 2021 at 16:48 3 ©Michael Langer

COMP 250 Fall 2021 Exercises - stacks, queues

3. (a) s2.push(s1.pop())

s2.push(s1.pop())

s3.push(s1.pop())

s3.push(s1.pop())

s3.push(s2.pop())

s3.push(s2.pop())

(b) s2.push(s1.pop())

s2.push(s1.pop())

s3.push(s1.pop())

s1.push(s2.pop())

s3.push(s2.pop())

s2.push(s1.pop())

s3.push(s1.pop())

s3.push(s2.pop())

4. (a) c (popped first), e, d, b, a

(b) push(a), push(b), pop(), push(c), push(d), pop(), pop(), pop() push(e), pop()

5.

reverseQueueFirstKElements(int k, Queue q)

{

if(q is empty or k > size(q)){

return //do nothing

}

else if(k>0){

tmp = new empty stack

for(int i = 0; i < k: i++){

tmp.push(dequeue(q))

}

while(!isEmptyStack(tmp)){

enqueue(q,pop(tmp))

}

for(int i = 0; i<size(q) - k; i++){

enqueue(q, dequeue(q))

}

}

}

last updated: 18th Oct, 2021 at 16:48 4 ©Michael Langer

COMP 250 Fall 2021 Exercises - stacks, queues

6. Here I present two solutions. Note that each requires that at least one of the enqueue() or
dequeue() operation is O(N) where N is the size of the queue.

Solution 1

The first solution was presented in the lecture. Implement enqueue(e) simply by pushing the
new element onto the main stack s.

enqueue(e){

s.push(e)

}

In this solution, the bottom of the stack would be the front of the queue (containing the
element that has been in the queue longest) and the top of the stack is the back of the queue
(containing the least recently added element). How can we implement dequeue, that is, how
do we remove the bottom element of the stack?

The idea is to use a second stack tmpS. We first pop all items from the main stack s, and
push each popped element directly onto the second stack tmpS. We then pop the top element
of the second stack (which is the oldest element in the set). Finally, we refill the main stack
s by popping all elements from the second stack and pushing each back on to the first stack.

dequeue(){

tmpS <- new empty stack

while !s.isEmpty(){

tmpS.push(s.pop())

}

returnValue <- tmpS.pop() // the dequeued element

while !(tmpS.isEmpty()){

s.push(tmpS.pop())

}

return returnValue

}

Solution 2

Here we let dequeue() be simple and just pop the stack. For this to work, the stack needs to
store the elements such that the oldest element is on top of the stack and the most recently
added element is at the bottom of the stack.

dequeue(){ return s.pop() }

With this solution, enqueue(e) needs to do the heavy lifting: enqueue uses a temporary
stack to invert the order of elements currently in the main stack, so that the newest element

last updated: 18th Oct, 2021 at 16:48 5 ©Michael Langer

COMP 250 Fall 2021 Exercises - stacks, queues

is on top of this temporary stack. Then it pushes the new element onto the empty main
stack. Then it copies all the elements back from the temporary stack to the main stack, using
pop-push. This recreates the original stack, but now the newest element has been added on
the bottom.

enqueue(e){

tmp <- new empty stack

while ! (s.isEmpty()){

tmpS.push(s.pop())

}

s.push(e)

while ! (tmpS.isEmpty()){

s.push(tmpS.pop())

}

}

7. The concepts are similar to the previous question.

Solution 1

push(e){ q.enqueue(e) }

pop(){

tmpQ <- new empty queue

while ! (q.isEmpty()){

tmpE <- q.dequeue()

if ! (q.isEmpty())

tmpQ.enqueue(tmpE)

else{

while !(tmpQ.isEmpty())

q.enqueue(tmpQ.dequeue())

return tmpE

}

}

}

Solution 2

Here the idea is similar, but now push does most of the work.

pop(){

q.dequeue()

}

last updated: 18th Oct, 2021 at 16:48 6 ©Michael Langer

COMP 250 Fall 2021 Exercises - stacks, queues

push(e){

make a new empty queue qTmp

qTmp.enqueue(e)

while !q.isEmpty(){

qTmp.enqueue(q.dequeue())

}

q <- qTmp

return qTmp

}

last updated: 18th Oct, 2021 at 16:48 7 ©Michael Langer

