Questions

1. (a) Suppose you wish to “count down” the numbers from a given n down to 1. You can use a while loop to do this:

```java
countdown(n){
    while (n > 0) {
        print n
        n-- }
}
```

Write a recursive version of this algorithm.

(b) Now write a recursive `countUp(n)` algorithm which counts up from 1 to n. This is slightly trickier than it seems.

2. Write a recursive algorithm that prints out a consecutive sequence of elements in an array. The method has three parameters: the array name, and the first and last indices to print from i.e. `displayArray(a, first, last)`

3. Here is an alternative reverse method for the `SLinkedList<E>` class (see online code from linked list exercises), which reverses the order of nodes in a singly linked list. The method calls a recursive helper method `reverseRecursiveHelper` which does most of the work. Write this helper method. If solution is different from the given one, then you should add your method to the `SLinkedList` class and test/debug it.

[MODIFIED Nov. 12, 2016]

```java
public void reverseRecursive(){
    SNode<E> oldHead = head;
    reverseRecursiveHelper(head);
    head = tail;
    tail = oldHead;
}
```

4. Consider a simplified version of the game “20 questions”, in which one person has a number in mind from 0 to $2^{20} - 1$. You can easily find that number with your twenty questions e.g. by asking for the ith bit of the number. (This is essentially binary search.)

Here is a slightly different game. Suppose I am thinking of a positive integer n but I don’t give you a bound on the number. It is easy for you figure out the number using n questions, namely question i is “is it the number i ?”. Give a faster algorithm, namely one that runs in time proportional to $\log n$.

5. Suppose that you are given an array of n different numbers that strictly increase from index 0 to index m, and strictly decrease from index m to index $n - 1$, where n is known but m is unknown. Note that there is a unique largest number in such a list, and it is at index m. Here are a few examples.
6. Use mathematical induction to prove the following:
 For all \(n \geq 1 \),
 \[
 1 + 3 + 5 + \cdots + (2n - 1) = n^2.
 \]

7. **[ADDED Nov 12, 2016]**
 Recall the mergesort algorithm which recursively partitions a list of size \(n \) into two sub-lists
 of half the size, sorts the two sublists, and then merges them.
 Show the order of the list elements after all merges of lists of size 1 to 2 have been completed,
 and then after all merges of lists of size 2 to lists of size 4 have been completed:

 \[
 \begin{align*}
 (6, 5, 2, 8, 4, 3, 7, 1) & \quad \text{original list, } n=8 \\
 (, , , , , , ,) & \quad \text{merges from } n=1 \text{ to } n=2 \text{ completed} \\
 (, , , , , , ,) & \quad \text{merges from } n=2 \text{ to } n=4 \text{ completed} \\
 (1, 2, 3, 4, 5, 6, 7, 8) & \quad \text{final sorted list}
 \end{align*}
 \]
Answers

1. (a) `countdown(n){
 if (n > 0) {
 print n
 countdown(n - 1)
 }
}
Did you remember the base case?

(b) `countUp(n){
 if (n > 0) {
 countUp(n - 1)
 print n
 }
}
Did you get the order of the instructions correct?

2. `displayArray(a, first, last){
 print a[first])
 if (first < last)
 displayArray(a, first+1, last)
}
Alternatively, you could do it like this:

 `displayArray(a, first, last){
 if (first < last)
 displayArray(a, first, last-1);
 print a[last])
}

3. The following two implementations do essentially the same thing, namely they advance `head to the next node in the list, recursively reverse the list from the new `head, and clean up the references that involve the original `head.

 `private void reverseRecursiveHelper(SNode<E> head){
 if (head.next != null){
 reverseRecursiveHelper1(head.next);
 head.next.next = head;
 head.next = null;
 }
private void reverseRecursiveHelper2(SNode<E> head){
 SNode<E> tmp = head;
 if (head.next != null){
 head = head.next;
 reverseRecursiveHelper2(head);
 head.next = tmp;
 }
 tmp.next = null;
}

4. The idea of the algorithm is to guess increasing powers of 2 until the power of 2 is bigger than the number. Then do a binary search (backwards).

 guess = 1
 answer = false
 while (answer == false){
 answer = (guess > n) // i.e. evaluate boolean expression
 guess = guess*2
 }
 // To reach here, we must have guess/2 <= n < guess
 binarySearch(n, [guess/2, guess])

Both the while loop and the binary search take time proportional to \(\log n \).

5. Here are two different solutions.

 // SOLUTION 1

 if (high-low == 1){
 if (a[low] < a[high])
 return high
 else
 return low
 }
 else{
 mid = (low + high)/2
 if (a[mid-1] < a[mid]){
 return findM(a, mid, high)
 else
 return findM(a, low, mid)
 }
// SOLUTION 2

mid = (low + high)/2
if (a[mid] < a[mid+1]){
 return findM(a, mid+1, high)
} else
 return findM(a, low, mid)
6. The base case of $n_0 = 1$ is obvious, since there is only a single term on the left hand side, i.e. $1 = 1^2$. The induction hypothesis is the statement $P(k)$:

$$P(k) \equiv "1 + 3 + 5 + \cdots + (2k - 1) = k^2."$$

To prove the induction step, we show that if $P(k)$ is true, then $P(k + 1)$ must also be true.

$$\sum_{i=1}^{k+1} (2i - 1) = 2(k + 1) - 1 + \sum_{i=1}^{k} (2i - 1)$$

$$= 2(k + 1) - 1 + k^2, \text{ by the induction hypothesis}$$

$$= 2k + 1 + k^2$$

$$= (k + 1)^2.$$

Thus, the induction step is also proved, and so we’re done.

7. Below I have grouped into four lists of size two, and then these four lists of size two are merged into two lists of size four.

\begin{align*}
(5, 6, 2, 8, 3, 4, 1, 7) & \quad \text{after merging lists of size 2 to lists of size 2} \\
(2, 5, 6, 8, 1, 3, 4, 7) & \quad \text{after merging lists of size 2 to lists of size 4}
\end{align*}