
COMP 250 Winter 2022 Exercises - singly and doubly linked lists

Questions

Questions 1-3 are on singly linked lists. Questions 4-5 are on doubly linked lists.

1. See the file Exercises LinkedList JavaCode.zip. You will need to put this code into the
correct packages. The stub code contains the questions. The non-stub code contains the
solutions.

(a) Fill in the missing code of the following methods in the SLinkedList stub.java class :

� add(int i, E element)

� getIndexOf(E e)

� remove(int i)

� getNode(int i)

(b) (More challenging) Fill in the code of the method reverse() which reverses the order
of elements in a singly linked list. The idea of the method is to reverse the order of the
nodes (not reversing the elements), by changing next references so that they go in the
opposite direction in the list. The head and tail references must be swapped too. To
do so, iterate from the head node to the tail node. At each step, partition the list
into two sub-lists: (1) the (reversed) nodes up to the current node and (2) the not-yet-
reversed nodes beyond the current node. The heads of the two lists are headList1 and
headList2.

You may find it helpful to visualize the linked list by drawing boxes (nodes) and arrows,
as done in the lectures. Doing it in your head is likely to be too difficult.

2. Can you have a loop in a singly linked list? That is, if you follow the next references, then
can you reach a node that you have already visited (and hence loop around infinitely many
times if you keep advancing by following the next reference ) ?

(This is a pseudocode question.)

3. Suppose you have a reference to a node in a singly linked list and this node is not the last one
in the list.

(a) How could you remove the element at this node from the list, while maintaining a proper
linked list data structure? Note that this would reduce the number of nodes by 1. Your
solution should not require looking for this node by starting at the head of the list, but
rather you must do it in constant time i.e. O(1). The solution is just a few lines of code.
Don’t peek!

(b) How could you insert an element into the list at the position that comes before the
element at this given node?

(This is a pseudocode question.)
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4. Implement the following methods in the DLinkedList stubs.java class:

� remove(int i)

This method first calls getNode(int i) which returns a reference to a node. getNode(int
i) was discussed in the lecture. remove(i) then removes this node from the list, and
this is the part you need to implement.

� addBefore(E e, DNode<E> node)

This is a private helper method which is called by various add methods.

� reverse()

i.e. same as in Question 1 but now with a doubly linked list.

5. Consider the Java code:

public void display( LinkedList<E> list ){

for (int i = 0; i < list.size(); i++){

System.out.println( list.get(i).toString() );

}

}

How does the number of steps of this method depend on size, the number of elements in the
list?

(a) Consider the case that the get(i) method starts at the front of the list.

(b) Consider the case that the get(i) method will start from the tail of the list in the case
that i is greater than size/2.

Part (a) was discussed in the lecture, but not part (b).
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Solutions

1. The solution code is found in the SLinkedList.java file.

For the reverse() method, see the figures and description here:
http://www.cim.mcgill.ca/~langer/250/E3-slinkedlist-reverse.pdf

2. Linked list data structures do allow for a loop, in the sense that there is nothing stopping the
next field of some node from referencing a node earlier in the list. However, in this case, the
data structure will not be a ”list”, in the sense of having a well defined ordering from 0, 1,
..., size -1. If the linked list class is properly implemented, then the methods should not allow
this to happen.

3. (a) Let cur be the reference to the given node.

cur.element = cur.next.element // Copy the element at the next node

// back to the current one.

cur.next = cur.next.next // Skip over the next node.

This reduces the size of the list by 1 and removes the element that had been at the
current node. The node that was removed still references the next node. That’s not a
problem since nothing references that node and so eventually it will be taken away by
the garbage collector. Alternatively, you could insert the following in a suitable place
(see comment).

tmp = cur.next // Insert after the first instruction above.

tmp.next = null // Insert after the second instruction above.

(b) Here the idea is similar. We insert a node after the current node and let that node’s next
field point to the same node as cur.next

tmp = new node

tmp.next = cur.next

Then, change the next field of the current node to point to the new node. Finally, move
the elements to their appropriate nodes.

cur.next = tmp

tmp.element = cur.element

cur.element = new element // the one to be added

4. The solution is found in the DLinkedList.java file.

5. (a) If the get(i) method always starts at the front of the list, then it requires i steps to
reach node i. So the total number of steps when calling get(i) for i in 0 to N-1 is

(1 + 2 + 3 + ... + N) =
N(N + 1)

2

which is O(N2). You might ask whether the sum instead should be

(0 + 1 + 2 + 3 + ... + N − 1) =
N(N − 1)

2
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Yes, that would be fine. It is also O(N2) which is the main point here.

(b) For any index i the first half of the list, it takes i steps to get to the node. So the number
of steps total for nodes in the first half of the list is:

(1 + 2 + 3 + ... +
N

2
) =

N
2

(N
2

+ 1)

2

For nodes in the second half of the list, we start from the tail instead of the head, but
the idea is the same, so it takes

(1 + 2 + 3 + ... +
N

2
) =

N
2

(N
2

+ 1)

2

steps in total to reach those nodes. Thus, in total the number of steps is the sum of the
above, or

N

2
(
N

2
+ 1).

This is about twice as fast as using the inefficient getNode() method, but it is still
O(N2).
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