Questions

[If you are studying for the final exam and only have a few hours to spend on these particular exercises, then I suggest concentrating on just a few of them, say Q7-Q9 and Q13-15.]

1. Suppose you have three $n \times n$ arrays, call them a[][]$, \mathrm{b}[][]$, and c[][] . Consider the following.
```
for i = 1 to n
    for j = 1 to n{
        c[i][j] = 0
        for k = 1 to n
            c[i][j] += a[i][k] * b[k][j];
    }
```

(Those you familiar with linear algebra will recognize this as matrix multiplication.)
Give a tight big O bound on this algorithm as a function of n.
2. True or false? Prove it.
(a) $n!$ is $O((n+2)!)$.
(b) $(n+2)$! is $O(n!)$.
(c) 9^{n} is $O\left(12^{n}\right)$.
(d) 12^{n} is $O\left(9^{n}\right)$.
3. Let $t(n)=\sum_{i=0}^{n} 3^{i}$. Show that $t(n)$ is $O\left(3^{n}\right)$.
4. (a) Use mathematical induction to prove that $F i b(n)$ is $O\left(\left(\frac{7}{4}\right)^{n}\right)$.
(b) Use mathematical induction to prove that $F i b(n) \in \Omega\left(\left(\frac{3}{2}\right)^{n}\right)$.
5. Show 2^{n} is $O(n!)$.

6 . Let $t(n)=n \log n$. Prove that $t(n)$ is $\Omega(\log (n!))$.
7. Let $t(n)=\frac{n^{2}}{2}+3 \log n-40$.. Prove that $t(n)$ is $\Omega\left(n^{2}\right)$.
8. Let $t(n)=\frac{1}{5} \log (n-8)$. Show that $t(n)$ is $\Omega(\log (n))$
9. Let $t(n)=(n+8)^{1.3}+3 n+5$. Prove that $t(n)$ is $O\left(n^{1.3}\right)$.
10. Let $t(n)=\sqrt{31 n+12 n \log n+57}$. Prove that $O(\sqrt{n} \log n)$.
11. If $f(n)$ is $O(g(n))$, can we conclude that $2^{f(n)}$ is $O\left(2^{g(n)}\right)$?
12. Is $t(n)=\frac{1}{n}$ in $\Omega(1)$?
13. Let $t(n)=5 n^{2}+3 n+4$.
(a) Use a limit argument to show that $t(n)$ is $O\left(n^{2}\right)$.
(b) Find constants c, n_{0} that satisfy the definition of big O for this example.
14. Give a tight big O bound on

$$
t(n)=\sqrt{n^{2}+100 n}-n
$$

15. What are the $O()$ and $\Omega()$ relationships between $t(n)=n^{a}$ and $g(n)=n^{b}$, where $0<a<b$?
16. What is the big O and big Omega relationship between $t(n)=\log _{a} n$ and $g(n)=\log _{b} n$, where $0<a<b$?

Hint:

$$
\log _{a} n=\log _{a} b * \log _{b} n
$$

Answers

1. The algorithm is $O\left(n^{3}\right)$. Why? For each value of i, we run the two inner loops (j and k). There are n values of i, so the number of steps is n times the number of steps in the two inner loops. The two inner loops take n^{2} steps (by similar reasoning, namely for each value of j, we run through all n values of k). Thus, the number of steps is $O\left(n * n^{2}\right)=O\left(n^{3}\right)$.
2. (a) (True) Applying the formal definition, we want to know if

$$
n!<c(n+2)(n+1) \cdot n!
$$

for n sufficiently large. Dividing by n ! gives

$$
1<c(n+2)(n+1)
$$

So let $c=1$ and $n_{0}=1$.
(b) (False) Here we need to find a $c, n_{0}>0$ such that

$$
(n+2)(n+1) \cdot n!<c(n!)
$$

for all $n>n_{0}$. Choose any c, n_{0}. Then, dividing by n !, we would now need to show that $(n+1)(n+2)<c$ for all $n \geq n_{0}$. But this is clearly false, since the left side grows without bound as n grows. Thus, $(n+2)$! is not $O(n!)$.
(c) (True) Since $9<12$, it follows that $9^{n}<12^{n}$ and so $c=1$ and $n_{0}=1$ does the job.
(d) (False) We want to show there exists $c, n_{0}>0$ such that $12^{n}<c 9^{n}$ for all $n \geq n_{0}$. But

$$
12^{n}<c 9^{n} \Longleftrightarrow\left(\frac{12}{9}\right)^{n}<c
$$

But this inequality cannot be true for all $n \geq n_{0}$, since the left side grows without bound. Thus, 12^{n} cannot be $O\left(9^{n}\right)$.
3. Recall the formula for a geometric series

$$
\sum_{i=0}^{n} a^{i}=\frac{a^{n+1}-1}{a-1}
$$

Then,

$$
\sum_{i=1}^{n} 3^{i}=\frac{3^{n+1}-1}{3-1}=\frac{3}{2}\left(3^{n}-\frac{1}{3}\right)
$$

which is $O\left(3^{n}\right)$, i.e. take $c=\frac{3}{2}$ and $n_{0}=1$.
4. (a) We need to find an n_{0} and c such that, for all $n \geq n_{0}, F(n)<c\left(\frac{7}{4}\right)^{n}$.

Try $c=1$. The base case is trivial since $F(0)=0<\left(\frac{7}{4}\right)^{0}$ and $F(1)=1<\frac{7}{4}$. So let's hypothesize that $F(n)<\left(\frac{7}{4}\right)^{n}$ for all n up to some $k \geq 1$ and see if it follows for $n=k+1$.

$$
\begin{aligned}
F(k+1) & =F(k)+F(k-1) \\
& <\left(\frac{7}{4}\right)^{k}+\left(\frac{7}{4}\right)^{k-1} \text { by the induction hypothesis, } \\
& =\left(\frac{7}{4}+1\right)\left(\frac{7}{4}\right)^{k-1}
\end{aligned}
$$

But it is easy to verify that $\frac{7}{4}+1<\left(\frac{7}{4}\right)^{2}$ and so (from the induction hypothesis) we get

$$
\begin{aligned}
F(k+1) & <\left(\frac{7}{4}\right)^{2}\left(\frac{7}{4}\right)^{k-1} \\
& =\left(\frac{7}{4}\right)^{k+1}
\end{aligned}
$$

This proves the induction step, and so we are done.
(b) We need to find an n_{0} and c such that $F(n)>c\left(\frac{3}{2}\right)^{n}$ for all $n \geq n_{0}$.

Let's first establish a base case. We can't have a base case for $n=0$ since $F(0)=0$ and so it will be impossible for $F(0)>c\left(\frac{3}{2}\right)^{0}$ for $c>0$. Instead, we try to find a c and use the base case(s) $n=1,2$. If we let $c=\left(\frac{2}{3}\right)^{2}$, then indeed we have $F(n)>c\left(\frac{3}{2}\right)^{n}$ for $n=1,2$. So let's try using that c and proving the induction step.
We assume the induction hypothesis, namely we assume that $F(n)>c\left(\frac{3}{2}\right)^{n}$ for $n=$ $k-1, k$. We want to show it follows that $F(k+1)>c\left(\frac{3}{2}\right)^{k+1}$.

$$
\begin{aligned}
F(k+1) & =F(k)+F(k-1) \\
& >c\left(\frac{3}{2}\right)^{k}+c\left(\frac{3}{2}\right)^{k-1} \text { by induction hypothesis } \\
& =c\left(\frac{3}{2}+1\right)\left(\frac{3}{2}\right)^{k-1} \\
& >c\left(\frac{3}{2}\right)^{2}\left(\frac{3}{2}\right)^{k-1}, \text { since } \frac{5}{2}>\frac{9}{4} \\
& =c\left(\frac{3}{2}\right)^{k+1}
\end{aligned}
$$

Thus, both the base case and induction step are proved and so we are done.
5. We want to show that there exist two constants $c>0$ and $n_{0}>0$ such that, for all $n \geq n_{0}$,

$$
2^{n} \leq c n!
$$

or, equivalently,

$$
\frac{2}{n} \cdot \frac{2}{n-1} \cdot \frac{2}{n-2} \cdots \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{2}{2} \cdot \frac{2}{1} \leq c .
$$

On the left side, the numerator and denominator have n terms each. We pair them up and note that numerator terms are all less than or equal to their corresponding denominator terms, except for the last pair $\left(\frac{2}{1}\right)$. We take the last pair to the other side,

$$
\frac{2}{n} \cdot \frac{2}{n-1} \cdot \frac{2}{n-2} \cdots \frac{2}{4} \frac{2}{3} \cdot \frac{2}{2} \leq \frac{c}{2}
$$

The terms on the left side are for $n \geq 2$. If $n=1$, then the left side is 1 .
So, if we let $c=2$ and $n_{0}=1$, then this inequality indeed is true for all $n \geq n_{0}$ since the right side is 1 and the left side is a product of terms that are each less than or equal to 1 .
6. We need to show there exist two positive constants c, n_{0} such that, for all $n \geq n_{0}$,

$$
n \log n>c \log (n!)
$$

Try $c=1$. Since $n \log n=\log \left(n^{n}\right)$, and since $\log x$ is monotonically increasing, it is enough for us to show that there exist n_{0} such that, for all $n \geq n_{0}$,

$$
n^{n}>n!
$$

But it is easy to see that $\frac{n^{n}}{n!}>1$ since both numerator and denominator have n terms each, and if we take corresponding terms, we notice that the ratio is greater than or equal to 1 for each. Thus, the product of the ratios is greater than or equal to 1 .
7. Here are two ways to do it. The first way:

$$
\begin{aligned}
t(n) & =\frac{n^{2}}{2}+3 \log n-40 \\
& \geq \frac{n^{2}}{2}-40 \text { for } n \geq 1
\end{aligned}
$$

Since we are looking for a lower bound, let's try a constant $c<\frac{1}{2}$, specifically take $c=\frac{1}{4}$. We want to find an n_{0} such that, for all $n \geq n_{0}$,

$$
\frac{n^{2}}{2}-40>\frac{n^{2}}{4}
$$

or equivalently

$$
\frac{n^{2}}{4}>40
$$

We see $n_{0}=13$ does the job, since $13^{2}=169>160=4 * 40$.
The second way to do it is to guess $c=\frac{1}{2}$ and then find an n_{0} such that $3 \log n-40>0$ for all $n>n_{0}$. Choosing $n_{0}=2^{\frac{40}{3}}$ does the job.
8. We are looking for a lower bound so let's try some constant $c<\frac{1}{5}$. Let's try $c=\frac{1}{10}$.

$$
\begin{aligned}
& \frac{1}{5} \log (n-8)>\frac{1}{10} \log n \\
\Longleftrightarrow & \log (n-8)>\frac{1}{2} \log n \\
\Longleftrightarrow & \log (n-8)>\log \sqrt{n} \\
\Longleftrightarrow & n-8>\sqrt{n}
\end{aligned}
$$

But the last inequality is true if n is sufficiently large, since n grows faster than \sqrt{n}. We still need to choose an n_{0}. The inequality holds for $n_{0}=16$ since $8>4$. Moreover, dividing both sides by \sqrt{n} gives

$$
\sqrt{n}>1+\frac{8}{\sqrt{n}}
$$

which holds for all $n>16$ since the left side is increasing and the right side is decreasing. So, $n_{0}=16$ does the job (and $c=\frac{1}{10}$).
9. We need to show there exists two positive constants c, n_{0} such that, for all $n \geq n_{0}$,

$$
\left.\left.\begin{array}{l}
(n+8)^{1.3}+3 n+5<c n^{1.3} \\
(n+8)^{1.3}+3 n+5
\end{array}\right)<(2 n)^{1.3}+3 n+5, \quad \text { if } n \geq 8 \text {. } n=8 n^{1.3}, \quad \text { since } 2^{1.3}<2^{2}=4\right\}
$$

So, take $n_{0}=8$ and $c=12$.
10. We want to show there exists a $c>0$ and $n_{0} \geq 1$ such that, for all $n \geq n_{0}$,

$$
\sqrt{31 n+12 n \log n+57}<c \sqrt{n} \log n
$$

But

$$
\begin{aligned}
\sqrt{31 n+12 n \log n+57} & <\sqrt{31 n \log n+12 n \log n+57 n \log n}, \text { when } n>2 \\
& =\sqrt{100 n \log n} \\
& =10 \sqrt{n} \sqrt{\log n} \\
& <10 \sqrt{n} \log n, \text { when } n>2
\end{aligned}
$$

where the last line follows from the fact that $\sqrt{x}<x$ when $x>1$. So, take $n_{0}=3$ and $c=10$.
11. No. Take $f(n)=2 n$ and $g(n)=n$. However, $2^{2 n}$ is 4^{n} which is not $O\left(2^{n}\right)$.
12. The definition of $\Omega()$ requires $c>0$. However, for any such c that we choose, there will be an n_{0} such that $t(n)<c$ when $n \geq n_{0}$, namely $n_{0}=\frac{1}{c}$. The idea here is that $t(n)$ is not asymptotically bounded below by a strictly positive constant.
13. (a) When we compute the limit, we get:

$$
\lim _{n \rightarrow \infty} \frac{5 n^{2}+3 n+4}{n^{2}}=5
$$

So, the third limit rule gives us that $t(n)$ is $\Theta(g(n))$, and thus in particular $t(n)$ is $O(g(n))$.
[ASIDE: You might be thinking you would use the first limit rule using limits which said that if $\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=0$ then $t(n)$ is $O(g(n))$. However, that rule doesn't apply here.]
(b) Since the limit is 5 , you might be tempted to choose $c=5$ as your constant. However, if you plug $c=5$ into the inequality $t(n) \leq c n^{2}$, you see it never is true.
As an alternative, find an upper bound on $t(n)$ as follows:

$$
5 n^{2}+3 n+4<5 n^{2}+3 n^{2}+4 n^{2}=12 n^{2}
$$

and so we can take $c=12$ and $n_{0}=1$.
14. You might guess that $t(n)$ is $O(n)$. Let's see what happens when we compute:

$$
\lim _{n \rightarrow \infty} \frac{t(n)}{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+100 n}-n}{n}=\lim _{n \rightarrow \infty} \sqrt{1+\frac{100}{n}}-1=0
$$

Since the limit is $0, t(n)$ is not $\Theta(n)$. But what is the tighter upper bound? In fact, $t(n)$ is $O(1)$. This is a bit tricky to prove using limits, so let's instead show it by finding an explicit constant upper bound.

$$
\begin{aligned}
t(n) & =\sqrt{n^{2}+100 n}-n \\
& \leq \sqrt{n^{2}+100 n+2500}-n \\
& =\sqrt{(n+50)^{2}}-n \\
& =n+50-n \\
& =50
\end{aligned}
$$

So, $t(n)$ is bounded above by a constant for all n, which means $t(n)$ is $O(1)$.
15. Since $b>a$ we have that $\lim _{n \rightarrow \infty} \frac{n^{a}}{n^{b}}=\lim _{n \rightarrow \infty} \frac{1}{n^{b-a}}=0$. Thus, n^{a} is $O\left(n^{b}\right)$ but n^{a} is not $\Omega\left(n^{b}\right)$.
16. Since

$$
\log _{a} n=\log _{a} b * \log _{b} n
$$

they differ by a constant factor only, and so they are in the same Θ class.

