Questions

[If you are studying for the final exam and only have a few hours to spend on these particular exercises, then I suggest concentrating on just a few of them, say Q7-Q9 and Q13-15.]

1. Suppose you have three $n \times n$ arrays, call them a[][], b[][], and c[][]. Consider the following.

```
for i = 1 to n
for j = 1 to n{
    c[i][j] = 0
    for k = 1 to n
        c[i][j] += a[i][k] * b[k][j];
}
```

(Those you familiar with linear algebra will recognize this as matrix multiplication.) Give a tight big O bound on this algorithm as a function of n.

- 2. True or false? Prove it.
 - (a) n! is O((n+2)!).
 - (b) (n+2)! is O(n!).
 - (c) 9^n is $O(12^n)$.
 - (d) 12^n is $O(9^n)$.
- 3. Let $t(n) = \sum_{i=0}^{n} 3^{i}$. Show that t(n) is $O(3^{n})$.
- 4. (a) Use mathematical induction to prove that Fib(n) is $O((\frac{7}{4})^n)$.
 - (b) Use mathematical induction to prove that $Fib(n) \in \Omega((\frac{3}{2})^n)$.
- 5. Show 2^n is O(n!).
- 6. Let $t(n) = n \log n$. Prove that t(n) is $\Omega(\log(n!))$.
- 7. Let $t(n) = \frac{n^2}{2} + 3\log n 40$. Prove that t(n) is $\Omega(n^2)$.
- 8. Let $t(n) = \frac{1}{5}\log(n-8)$. Show that t(n) is $\Omega(\log(n))$
- 9. Let $t(n) = (n+8)^{1.3} + 3n + 5$. Prove that t(n) is $O(n^{1.3})$.
- 10. Let $t(n) = \sqrt{31n + 12n \log n + 57}$. Prove that $O(\sqrt{n} \log n)$.

- 11. If f(n) is O(g(n)), can we conclude that $2^{f(n)}$ is $O(2^{g(n)})$?
- 12. Is $t(n) = \frac{1}{n}$ in $\Omega(1)$?
- 13. Let $t(n) = 5n^2 + 3n + 4$.
 - (a) Use a limit argument to show that t(n) is $O(n^2)$.
 - (b) Find constants c, n_0 that satisfy the definition of big O for this example.

14. Give a tight big O bound on

$$t(n) = \sqrt{n^2 + 100n} - n.$$

- 15. What are the O() and $\Omega()$ relationships between $t(n) = n^a$ and $g(n) = n^b$, where 0 < a < b?
- 16. What is the big O and big Omega relationship between $t(n) = \log_a n$ and $g(n) = \log_b n$, where 0 < a < b?

Hint:

$$\log_a n = \log_a b * \log_b n$$

Answers

- 1. The algorithm is $O(n^3)$. Why? For each value of *i*, we run the two inner loops (*j* and *k*). There are *n* values of *i*, so the number of steps is *n* times the number of steps in the two inner loops. The two inner loops take n^2 steps (by similar reasoning, namely for each value of *j*, we run through all *n* values of *k*). Thus, the number of steps is $O(n * n^2) = O(n^3)$.
- 2. (a) (True) Applying the formal definition, we want to know if

$$n! < c(n+2)(n+1) \cdot n!$$

for n sufficiently large. Dividing by n! gives

$$1 < c(n+2)(n+1).$$

So let c = 1 and $n_0 = 1$.

(b) (False) Here we need to find a $c, n_0 > 0$ such that

$$(n+2)(n+1) \cdot n! < c(n!)$$

for all $n > n_0$. Choose any c, n_0 . Then, dividing by n!, we would now need to show that (n+1)(n+2) < c for all $n \ge n_0$. But this is clearly false, since the left side grows without bound as n grows. Thus, (n+2)! is not O(n!).

- (c) (True) Since 9 < 12, it follows that $9^n < 12^n$ and so c = 1 and $n_0 = 1$ does the job.
- (d) (False) We want to show there exists $c, n_0 > 0$ such that $12^n < c9^n$ for all $n \ge n_0$. But

$$12^n < c9^n \iff \left(\frac{12}{9}\right)^n < c$$

But this inequality cannot be true for all $n \ge n_0$, since the left side grows without bound. Thus, 12^n cannot be $O(9^n)$.

3. Recall the formula for a geometric series

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}.$$

Then,

$$\sum_{i=1}^{n} 3^{i} = \frac{3^{n+1} - 1}{3 - 1} = \frac{3}{2} (3^{n} - \frac{1}{3})$$

which is $O(3^n)$, i.e. take $c = \frac{3}{2}$ and $n_0 = 1$.

4. (a) We need to find an n_0 and c such that, for all $n \ge n_0$, $F(n) < c(\frac{7}{4})^n$.

Try c = 1. The base case is trivial since $F(0) = 0 < (\frac{7}{4})^0$ and $F(1) = 1 < \frac{7}{4}$. So let's hypothesize that $F(n) < (\frac{7}{4})^n$ for all n up to some $k \ge 1$ and see if it follows for n = k+1.

$$\begin{split} F(k+1) &= F(k) + F(k-1) \\ &< (\frac{7}{4})^k \ + \ (\frac{7}{4})^{k-1} \ \text{ by the induction hypothesis,} \\ &= (\frac{7}{4} \ + \ 1)(\frac{7}{4})^{k-1} \end{split}$$

But it is easy to verify that $\frac{7}{4} + 1 < (\frac{7}{4})^2$ and so (from the induction hypothesis) we get

$$F(k+1) < (\frac{7}{4})^2 (\frac{7}{4})^{k-1}$$
$$= (\frac{7}{4})^{k+1}.$$

This proves the induction step, and so we are done.

- (b) We need to find an n_0 and c such that $F(n) > c(\frac{3}{2})^n$ for all $n \ge n_0$.
 - Let's first establish a base case. We can't have a base case for n = 0 since F(0) = 0 and so it will be impossible for $F(0) > c(\frac{3}{2})^0$ for c > 0. Instead, we try to find a c and use the base case(s) n = 1, 2. If we let $c = (\frac{2}{3})^2$, then indeed we have $F(n) > c(\frac{3}{2})^n$ for n = 1, 2. So let's try using that c and proving the induction step.

We assume the induction hypothesis, namely we assume that $F(n) > c(\frac{3}{2})^n$ for n = k - 1, k. We want to show it follows that $F(k+1) > c(\frac{3}{2})^{k+1}$.

$$F(k+1) = F(k) + F(k-1)$$

> $c(\frac{3}{2})^k + c(\frac{3}{2})^{k-1}$ by induction hypothesis
= $c(\frac{3}{2}+1)(\frac{3}{2})^{k-1}$
> $c(\frac{3}{2})^2(\frac{3}{2})^{k-1}$, since $\frac{5}{2} > \frac{9}{4}$
= $c(\frac{3}{2})^{k+1}$

Thus, both the base case and induction step are proved and so we are done.

5. We want to show that there exist two constants c > 0 and $n_0 > 0$ such that, for all $n \ge n_0$,

$$2^n \leq c n!$$

or, equivalently,

$$\frac{2}{n} \cdot \frac{2}{n-1} \cdot \frac{2}{n-2} \dots \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{2}{2} \cdot \frac{2}{1} \le c.$$

On the left side, the numerator and denominator have *n* terms each. We pair them up and note that numerator terms are all less than or equal to their corresponding denominator terms, except for the last pair $(\frac{2}{1})$. We take the last pair to the other side,

$$\frac{2}{n} \cdot \frac{2}{n-1} \cdot \frac{2}{n-2} \dots \frac{2}{4} \frac{2}{3} \cdot \frac{2}{2} \le \frac{c}{2}$$

last updated: 24^{th} Mar, 2022 at 14:00

The terms on the left side are for $n \ge 2$. If n = 1, then the left side is 1.

So, if we let c = 2 and $n_0 = 1$, then this inequality indeed is true for all $n \ge n_0$ since the right side is 1 and the left side is a product of terms that are each less than or equal to 1.

6. We need to show there exist two positive constants c, n_0 such that, for all $n \ge n_0$,

$$n\log n > c\log(n!).$$

Try c = 1. Since $n \log n = \log(n^n)$, and since $\log x$ is monotonically increasing, it is enough for us to show that there exist n_0 such that, for all $n \ge n_0$,

$$n^n > n!$$

But it is easy to see that $\frac{n^n}{n!} > 1$ since both numerator and denominator have n terms each, and if we take corresponding terms, we notice that the ratio is greater than or equal to 1 for each. Thus, the product of the ratios is greater than or equal to 1.

7. Here are two ways to do it. The first way:

$$t(n) = \frac{n^2}{2} + 3\log n - 40$$

$$\ge \frac{n^2}{2} - 40 \text{ for } n \ge 1$$

Since we are looking for a lower bound, let's try a constant $c < \frac{1}{2}$, specifically take $c = \frac{1}{4}$. We want to find an n_0 such that, for all $n \ge n_0$,

$$\frac{n^2}{2} - 40 > \frac{n^2}{4}$$

or equivalently

$$\frac{n^2}{4} > 40$$

We see $n_0 = 13$ does the job, since $13^2 = 169 > 160 = 4 * 40$.

The second way to do it is to guess $c = \frac{1}{2}$ and then find an n_0 such that $3 \log n - 40 > 0$ for all $n > n_0$. Choosing $n_0 = 2^{\frac{40}{3}}$ does the job.

8. We are looking for a lower bound so let's try some constant $c < \frac{1}{5}$. Let's try $c = \frac{1}{10}$.

$$\frac{1}{5}\log(n-8) > \frac{1}{10}\log n$$
$$\iff \log(n-8) > \frac{1}{2}\log n$$
$$\iff \log(n-8) > \log\sqrt{n}$$
$$\iff n-8 > \sqrt{n}$$

Exercises - big O, Ω, Θ

But the last inequality is true if n is sufficiently large, since n grows faster than \sqrt{n} . We still need to choose an n_0 . The inequality holds for $n_0 = 16$ since 8 > 4. Moreover, dividing both sides by \sqrt{n} gives

$$\sqrt{n} > 1 + \frac{8}{\sqrt{n}}$$

which holds for all n > 16 since the left side is increasing and the right side is decreasing. So, $n_0 = 16$ does the job (and $c = \frac{1}{10}$).

9. We need to show there exists two positive constants c, n_0 such that, for all $n \ge n_0$,

$$(n+8)^{1.3} + 3n + 5 < cn^{1.3}.$$

$$(n+8)^{1.3} + 3n + 5 < (2n)^{1.3} + 3n + 5$$
, if $n \ge 8$
 $< 4n^{1.3} + 3n^{1.3} + 5n^{1.3}$, since $2^{1.3} < 2^2 = 4$
 $= 12n^{1.3}$

So, take $n_0 = 8$ and c = 12.

10. We want to show there exists a c > 0 and $n_0 \ge 1$ such that, for all $n \ge n_0$,

$$\sqrt{31n + 12n\log n + 57} < c\sqrt{n}\log n.$$

But

$$\begin{split} \sqrt{31n+12n\log n+57} &< \sqrt{31n\log n+12n\log n+57n\log n}, \text{ when } n>2\\ &= \sqrt{100n\log n}\\ &= 10 \sqrt{n} \sqrt{\log n}\\ &< 10\sqrt{n}\log n, \text{ when } n>2 \end{split}$$

where the last line follows from the fact that $\sqrt{x} < x$ when x > 1. So, take $n_0 = 3$ and c = 10.

- 11. No. Take f(n) = 2n and g(n) = n. However, 2^{2n} is 4^n which is not $O(2^n)$.
- 12. The definition of $\Omega()$ requires c > 0. However, for any such c that we choose, there will be an n_0 such that t(n) < c when $n \ge n_0$, namely $n_0 = \frac{1}{c}$. The idea here is that t(n) is not asymptotically bounded below by a strictly positive constant.
- 13. (a) When we compute the limit, we get:

$$\lim_{n \to \infty} \frac{5n^2 + 3n + 4}{n^2} = 5$$

So, the third limit rule gives us that t(n) is $\Theta(g(n))$, and thus in particular t(n) is O(g(n)).

[ASIDE: You might be thinking you would use the first limit rule using limits which said that if $\lim_{n\to\infty}\frac{t(n)}{g(n)} = 0$ then t(n) is O(g(n)). However, that rule doesn't apply here.]

last updated: 24^{th} Mar, 2022 at 14:00

(b) Since the limit is 5, you might be tempted to choose c = 5 as your constant. However, if you plug c = 5 into the inequality $t(n) \le cn^2$, you see it never is true. As an alternative, find an upper bound on t(n) as follows:

$$5n^2 + 3n + 4 < 5n^2 + 3n^2 + 4n^2 = 12n^2$$

and so we can take c = 12 and $n_0 = 1$.

14. You might guess that t(n) is O(n). Let's see what happens when we compute:

$$\lim_{n \to \infty} \frac{t(n)}{n} = \lim_{n \to \infty} \frac{\sqrt{n^2 + 100n} - n}{n} = \lim_{n \to \infty} \sqrt{1 + \frac{100}{n}} - 1 = 0.$$

Since the limit is 0, t(n) is not $\Theta(n)$. But what is the tighter upper bound? In fact, t(n) is O(1). This is a bit tricky to prove using limits, so let's instead show it by finding an explicit constant upper bound.

$$t(n) = \sqrt{n^2 + 100n} - n$$

$$\leq \sqrt{n^2 + 100n + 2500} - n$$

$$= \sqrt{(n + 50)^2} - n$$

$$= n + 50 - n$$

$$= 50$$

So, t(n) is bounded above by a constant for all n, which means t(n) is O(1).

- 15. Since b > a we have that $\lim_{n\to\infty} \frac{n^a}{n^b} = \lim_{n\to\infty} \frac{1}{n^{b-a}} = 0$. Thus, n^a is $O(n^b)$ but n^a is not $\Omega(n^b)$.
- 16. Since

$$\log_a n = \log_a b * \log_b n$$

they differ by a constant factor only, and so they are in the same Θ class.