
COMP 250 Winter 2022 Exercises - big O,Ω,Θ

Questions

[If you are studying for the final exam and only have a few hours to spend on these
particular exercises, then I suggest concentrating on just a few of them, say Q7-Q9
and Q13-15. ]

1. Suppose you have three n × n arrays, call them a[][], b[][], and c[][]. Consider the
following.

for i = 1 to n

for j = 1 to n{

c[i][j] = 0

for k = 1 to n

c[i][j] += a[i][k] * b[k][j];

}

(Those you familiar with linear algebra will recognize this as matrix multiplication.)

Give a tight big O bound on this algorithm as a function of n.

2. True or false? Prove it.

(a) n! is O((n + 2)!).

(b) (n + 2)! is O(n!).

(c) 9n is O(12n).

(d) 12n is O(9n).

3. Let t(n) =
∑n

i=0 3i. Show that t(n) is O(3n).

4. (a) Use mathematical induction to prove that Fib(n) is O( (7
4
)n ).

(b) Use mathematical induction to prove that Fib(n) ∈ Ω((3
2
)n).

5. Show 2n is O(n!).

6. Let t(n) = n log n. Prove that t(n) is Ω(log(n!)).

7. Let t(n) = n2

2
+ 3 log n− 40.. Prove that t(n) is Ω(n2).

8. Let t(n) = 1
5

log(n− 8). Show that t(n) is Ω(log(n))

9. Let t(n) = (n + 8)1.3 + 3n + 5. Prove that t(n) is O(n1.3).

10. Let t(n) =
√

31n + 12n log n + 57. Prove that O(
√
n log n).
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11. If f(n) is O(g(n)), can we conclude that 2f(n) is O(2g(n)) ?

12. Is t(n) = 1
n

in Ω(1) ?

13. Let t(n) = 5n2 + 3n + 4.

(a) Use a limit argument to show that t(n) is O(n2).

(b) Find constants c, n0 that satisfy the definition of big O for this example.

14. Give a tight big O bound on
t(n) =

√
n2 + 100n− n.

15. What are the O() and Ω() relationships between t(n) = na and g(n) = nb, where 0 < a < b ?

16. What is the big O and big Omega relationship between t(n) = loga n and g(n) = logb n, where
0 < a < b ?

Hint:
loga n = loga b ∗ logb n

last updated: 24th Mar, 2022 at 14:00 2 ©Michael Langer



COMP 250 Winter 2022 Exercises - big O,Ω,Θ

Answers

1. The algorithm is O(n3). Why? For each value of i, we run the two inner loops (j and k).
There are n values of i, so the number of steps is n times the number of steps in the two inner
loops. The two inner loops take n2 steps (by similar reasoning, namely for each value of j, we
run through all n values of k). Thus, the number of steps is O(n ∗ n2) = O(n3).

2. (a) (True) Applying the formal definition, we want to know if

n! < c(n + 2)(n + 1) · n!

for n sufficiently large. Dividing by n! gives

1 < c(n + 2)(n + 1).

So let c = 1 and n0 = 1.

(b) (False) Here we need to find a c, n0 > 0 such that

(n + 2)(n + 1) · n! < c(n!)

for all n > n0. Choose any c, n0. Then, dividing by n!, we would now need to show
that (n + 1)(n + 2) < c for all n ≥ n0. But this is clearly false, since the left side grows
without bound as n grows. Thus, (n + 2)! is not O(n!).

(c) (True) Since 9 < 12, it follows that 9n < 12n and so c = 1 and n0 = 1 does the job.

(d) (False) We want to show there exists c, n0 > 0 such that 12n < c9n for all n ≥ n0. But

12n < c9n ⇐⇒ (
12

9
)n < c

But this inequality cannot be true for all n ≥ n0, since the left side grows without bound.
Thus, 12n cannot be O(9n).

3. Recall the formula for a geometric series

n∑
i=0

ai =
an+1 − 1

a− 1
.

Then,
n∑

i=1

3i =
3n+1 − 1

3− 1
=

3

2
(3n − 1

3
)

which is O(3n), i.e. take c = 3
2

and n0 = 1.

4. (a) We need to find an n0 and c such that, for all n ≥ n0, F (n) < c(7
4
)n.
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Try c = 1. The base case is trivial since F (0) = 0 < (7
4
)0 and F (1) = 1 < 7

4
. So let’s

hypothesize that F (n) < (7
4
)n for all n up to some k ≥ 1 and see if it follows for n = k+1.

F (k + 1) = F (k) + F (k − 1)

< (
7

4
)k + (

7

4
)k−1 by the induction hypothesis,

= (
7

4
+ 1)(

7

4
)k−1

But it is easy to verify that 7
4

+ 1 < (7
4
)2 and so (from the induction hypothesis) we get

F (k + 1) < (
7

4
)2 (

7

4
)k−1

= (
7

4
)k+1.

This proves the induction step, and so we are done.

(b) We need to find an n0 and c such that F (n) > c(3
2
)n for all n ≥ n0.

Let’s first establish a base case. We can’t have a base case for n = 0 since F (0) = 0 and
so it will be impossible for F (0) > c(3

2
)0 for c > 0. Instead, we try to find a c and use the

base case(s) n = 1, 2. If we let c = (2
3
)2, then indeed we have F (n) > c(3

2
)n for n = 1, 2.

So let’s try using that c and proving the induction step.

We assume the induction hypothesis, namely we assume that F (n) > c(3
2
)n for n =

k − 1, k. We want to show it follows that F (k + 1) > c(3
2
)k+1.

F (k + 1) = F (k) + F (k − 1)

> c(
3

2
)k + c (

3

2
)k−1 by induction hypothesis

= c (
3

2
+ 1) (

3

2
)k−1

> c (
3

2
)2(

3

2
)k−1, since

5

2
>

9

4

= c (
3

2
)k+1

Thus, both the base case and induction step are proved and so we are done.

5. We want to show that there exist two constants c > 0 and n0 > 0 such that, for all n ≥ n0,

2n ≤ c n!

or, equivalently,
2

n
· 2

n− 1
· 2

n− 2
. . .

2

4
· 2

3
· 2

2
· 2

1
≤ c.

On the left side, the numerator and denominator have n terms each. We pair them up and
note that numerator terms are all less than or equal to their corresponding denominator terms,
except for the last pair (2

1
). We take the last pair to the other side,

2

n
· 2

n− 1
· 2

n− 2
. . .

2

4

2

3
· 2

2
≤ c

2
.
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The terms on the left side are for n ≥ 2. If n = 1, then the left side is 1.

So, if we let c = 2 and n0 = 1, then this inequality indeed is true for all n ≥ n0 since the right
side is 1 and the left side is a product of terms that are each less than or equal to 1.

6. We need to show there exist two positive constants c, n0 such that, for all n ≥ n0,

n log n > c log(n!).

Try c = 1. Since n log n = log(nn), and since log x is monotonically increasing, it is enough
for us to show that there exist n0 such that, for all n ≥ n0,

nn > n!

But it is easy to see that nn

n!
> 1 since both numerator and denominator have n terms each,

and if we take corresponding terms, we notice that the ratio is greater than or equal to 1 for
each. Thus, the product of the ratios is greater than or equal to 1.

7. Here are two ways to do it. The first way:

t(n) =
n2

2
+ 3 log n− 40

≥ n2

2
− 40 for n ≥ 1

Since we are looking for a lower bound, let’s try a constant c < 1
2
, specifically take c = 1

4
. We

want to find an n0 such that, for all n ≥ n0,

n2

2
− 40 >

n2

4

or equivalently
n2

4
> 40

We see n0 = 13 does the job, since 132 = 169 > 160 = 4 ∗ 40.

The second way to do it is to guess c = 1
2

and then find an n0 such that 3 log n− 40 > 0 for

all n > n0. Choosing n0 = 2
40
3 does the job.

8. We are looking for a lower bound so let’s try some constant c < 1
5
. Let’s try c = 1

10
.

1

5
log(n− 8) >

1

10
log n

⇐⇒ log(n− 8) >
1

2
log n

⇐⇒ log(n− 8) > log
√
n

⇐⇒ n− 8 >
√
n
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But the last inequality is true if n is sufficiently large, since n grows faster than
√
n. We still

need to choose an n0. The inequality holds for n0 = 16 since 8 > 4. Moreover, dividing both
sides by

√
n gives

√
n > 1 +

8√
n

which holds for all n > 16 since the left side is increasing and the right side is decreasing. So,
n0 = 16 does the job (and c = 1

10
).

9. We need to show there exists two positive constants c, n0 such that, for all n ≥ n0,

(n + 8)1.3 + 3n + 5 < cn1.3.

(n + 8)1.3 + 3n + 5 < (2n)1.3 + 3n + 5, if n ≥ 8

< 4n1.3 + 3n1.3 + 5n1.3, since 21.3 < 22 = 4

= 12n1.3

So, take n0 = 8 and c = 12.

10. We want to show there exists a c > 0 and n0 ≥ 1 such that, for all n ≥ n0,√
31n + 12n log n + 57 < c

√
n log n.

But √
31n + 12n log n + 57 <

√
31n log n + 12n log n + 57n log n, when n > 2

=
√

100n log n

= 10
√
n
√

log n

< 10
√
n log n, when n > 2

where the last line follows from the fact that
√
x < x when x > 1. So, take n0 = 3 and c = 10.

11. No. Take f(n) = 2n and g(n) = n. However, 22n is 4n which is not O(2n).

12. The definition of Ω() requires c > 0. However, for any such c that we choose, there will be
an n0 such that t(n) < c when n ≥ n0, namely n0 = 1

c
. The idea here is that t(n) is not

asymptotically bounded below by a strictly positive constant.

13. (a) When we compute the limit, we get:

limn→∞
5n2 + 3n + 4

n2
= 5

So, the third limit rule gives us that t(n) is Θ(g(n)), and thus in particular t(n) is
O(g(n)).

[ASIDE: You might be thinking you would use the first limit rule using limits which said

that if limn→∞
t(n)
g(n)

= 0 then t(n) is O(g(n)). However, that rule doesn’t apply here.]
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(b) Since the limit is 5, you might be tempted to choose c = 5 as your constant. However,
if you plug c = 5 into the inequality t(n) ≤ cn2, you see it never is true.

As an alternative, find an upper bound on t(n) as follows:

5n2 + 3n + 4 < 5n2 + 3n2 + 4n2 = 12n2

and so we can take c = 12 and n0 = 1.

14. You might guess that t(n) is O(n). Let’s see what happens when we compute:

limn→∞
t(n)

n
= limn→∞

√
n2 + 100n− n

n
= limn→∞

√
1 +

100

n
− 1 = 0.

Since the limit is 0, t(n) is not Θ(n). But what is the tighter upper bound? In fact, t(n) is
O(1). This is a bit tricky to prove using limits, so let’s instead show it by finding an explicit
constant upper bound.

t(n) =
√
n2 + 100n− n

≤
√
n2 + 100n + 2500− n

=
√

(n + 50)2 − n

= n + 50− n

= 50

So, t(n) is bounded above by a constant for all n, which means t(n) is O(1).

15. Since b > a we have that limn→∞
na

nb = limn→∞
1

nb−a = 0. Thus, na is O(nb) but na is not
Ω(nb).

16. Since
loga n = loga b ∗ logb n

they differ by a constant factor only, and so they are in the same Θ class.
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