Questions

1. **[EDITED: Nov. 19]**

 Both hashing and binary search trees allow you to store and access map entries in an efficient manner. What are the advantages/disadvantages of each which would make you choose one over the other?

2. Consider a hash table with capacity \(m\) and with \(n\) entries, i.e. the load factor is \(n/m\). Give O() and Ω() bounds for an iterator that visits all entries.

3. Suppose we were to define a hash code on strings \(s\) by:

 \[
h(s) = \sum_{i=0}^{n-1} s[i] \cdot x^i
 \]

 where \(s[i]\) is the 16-bit unicode value of the character at position \(i\) in the string, \(n\) is the length of \(s\), and \(x\) is some positive integer.

 Give an upper bound on the number of bits needed for the hash code as a function of \(x\) and \(n\) (the length of the string).

4. Suppose you have approximately 1000 images that you would like to store. Rather than labelling them using a string (i.e. filename) and indexing them based on filename, you would like to label them using small images called “thumbnails”. Let’s say each thumbnail image is 64 × 64 pixels, and each pixel can have intensity values from 0 to 255 (ignore color here.) We want to use the thumbnail images as keys in a hash function.

 Suggest a suitable hash function, namely one that avoids collisions and that doesn’t take too much space.

5. Canadian postal codes are of the form \(L_1D_1L_2D_2L_3D_3\) where \(L\) is always a letter (A-Z) and \(D\) is always a digit (0-9). Suppose you have your own company and you wish to index your customer addresses using the postal code as the key. Let the digits A-Z be coded with numbers 1 to 26, for example, \(code(B) = 2\). The codes of the digits are just the digits themselves.

 (a) Define a hash function:

 \[
h(L_1D_1L_2D_2L_3D_3) = (\sum_{i=1}^{3} code(L_i) + \sum_{i=1}^{3} D_i) \mod 10.
 \]

 Give an example of a postal code that begins with H3A and that collides with H3A2A7.

 (b) Give an example of a hash function that would never result in a collision. How large would the hash table need to be?
Answers

1. A BST generally gives slower access than a hash table. Why?

 With a BST, we would search for a key by following a path from the root towards the leaves. For each node in the BST we encounter, we do a key comparison (<, =, >). If the BST is balanced (best case), then on average it will take us $O(\log n)$ steps to find a key, or determine that there is no matching key, where n is the number of keys in the BST. So, for example, if $n = 2000$ and the tree is balanced, then it will take us on average roughly 10 comparisons to find an item (i.e. $2000 \approx 2^{11}$, and about that half the nodes in a complete binary tree are leaves.) If the BST is not balanced, then it will take longer to find the key. This is faster than using a linked list, but still slow relative to a hash table.

 With hashing, there is a function $h(key)$ which provides a hash value which is a number from 0 to $m - 1$ where $m \approx n$. Given a key, k, we compute $h(k)$ using some formula or algorithm, and then we go directly to the entry $h(k)$ in the hash table and search through a (typically very short) list for key k. If the hash function is easy to compute, then you can find the key more quickly than with a BST. Note that the BST requires a comparison to be made at each node, and these comparisons can be as expensive as compute a hash value.

 Another way to think about the difference is to note that binary search trees do a sequence of comparisons, i.e. each comparison returns one of three values (<, =, >), which is relatively little information. (We only need 2 bits to specify one of three values.) By contrast, a hash function gives you $\log m$ bits of information, namely it specifies one of m values. You still need to scan the entries in the bucket at index $h(k)$. But if the hash function does a good job, then most of the buckets will have very few elements.

 So is there any advantage of a binary search tree over the hash table? Yes. The BST may be traversed to list off all elements in order. (The basic idea is that one can start at any node in the BST and continue traversing in order from there and stop when one wants.) With a hash table, one doesn’t represent the key orderings at all, so reading off an ordered list of keys cannot be done.

2. The simplest way to define the iterator would be to step through each bucket in the hash table. There are m buckets and each needs to be examined, both in the best case and worst case. For each non-empty bucket, the (key,value) pairs (“entries”) in the bucket must each be visited i.e. the list in each bucket needs to be traversed. These traversal require a total of n visits, regardless of how the entries are distributed over the buckets. Thus, the best case is the same as the worst case, namely $\Omega(m + n)$ and $O(m + n)$.

3. The largest hash code is $2^{16}(x^0 + x^1 + \cdots + x^{n-1}) = 2^{16}(\frac{x^n-1}{x-1}) < 2^{16}x^n$. Taking the log gives the number of bits of the hashCode $\approx 16 + n\log_2 x$.

 For example, if $x = 31$ (as in Java’s String class’es hashCode method), the hashcode would be about $16 + 5n$ bits. Here is an example with $n = 4$.

 \[s[0] \times 31^0 \]

Footnote: keep in mind that it takes extra work to keep it balanced – wait for COMP 251
4. Let’s make a hash table with \(m = 2000 \) entries so that we are sure there will be plenty of buckets with no elements (and hence collisions are relatively rare).

For the hash function, we need to map the \(64 \times 64 \) pixel colors to a number larger than \(m = 2000 \). To do so, we could define a hash code to be the sum of the intensity values at the pixels. Assume the average intensity value is 128, we would get a number on average of \(64 \times 64 \times 128 \) which is much bigger than \(m \). Then, to get the hash value, we could take the sum of the color values and compute \(\text{sum mod } m \).

5. (a) \(h(\text{H3A2A7}) = (8 + 3 + 1 + 2 + 1 + 7) \mod 10 = 2 \)

So, you need to come up with a postal code \(D_2L_3D_3 \) such that \(D_2 + \text{code}(L_3) + D_3 \mod 10 \) is the same as \(2 + 1 + 7 \mod 10 \). The latter is 0. So, for example, if you take ”3A6”, then \(D_2 + \text{code}(L_3) + D_3 \mod 10 = 0 \), and \(h(\text{H3A3A6}) = (8 + 3 + 1 + 3 + 1 + 6) \mod 10 = 2 \)

(b) One simple solution is to use base \(b = 26 \) and define:

\[
h(L_1D_1L_2D_2L_3D_3) \equiv \text{code}(L_1) + D_1b + \text{code}(L_2)b^2 + D_2b^3 + \text{code}(L_3)b^4 + D_3b^5
\]

In these cases, the postal code \(Z9Z9Z9 \) would give the largest hash value, and you can plug in the numbers and letters to get the largest value. That is how big the hash table would need to be for this hash code.

Notice that there are \(10^3 \times 26^3 \) possible postal codes. You could come up with a hash function that maps each postal code to one of the numbers from 0 to \(10^3 \times 26^3 - 1 \). For example,

\[
h(L_1D_1L_2D_2L_3D_3) \equiv (D_1+D_2*10+D_3*10^2)+10^3*(\text{code}(L_1)+\text{code}(L_2)*26+\text{code}(L_3)*26^2).
\]