
COMP 250 Winter 2022 Exercises - maps and hashing

Questions

1. Consider each of the following data structures to store a set of entries of a map. What would
be time complexity (worst case) for each of the operations: put, get, and remove?

Note that the arguments are: put(key,value), get(key), and remove(key).

(a) arraylist or linked list

(b) binary search tree

(c) heap

2. Two different Java strings can have the same hashcode() value. Prove this statement, by
considering strings of length 2. (You might think this is just obvious. Fine, but how would
you convince someone else who wasn’t as sure as you?)

Assume the characters in a string are coded with 16 bits each.

3. Suppose we were to define a hash code on strings s by:

h(s) =
n−1∑
i=0

s[i] xi

where s[i] is the 16-bit unicode value of the character at position i in the string, n is the length
of s, and x is some positive integer.

Give an upper bound on the number of bits needed for the hash code as a function of x and
n (the length of the string).

4. The return type of the Java hashCode() method is int. But the definition of the hashcode
of a string is a polynomial whose value can easily exceed the 32 bit limit of the int type. How
is this possible?

5. Suppose you are given a list of n elements. A “brute force” method to find duplicates could
use two (nested) loops. The outer loop iterates over position i the list, and the inner loop
iterates over the positions j such that j > i and checks if the elements at i and j are the same.
The brute force method takes O(n2) steps.

Give a O(n) method for finding the duplicates. Hint: use a data structure based on hashing.

6. Both hashing and binary search trees allow you to efficiently store and access map entries.
What are the advantages/disadvantages of each, which would make you choose one over the
other?

7. Suppose you have approximately 1000 images that you would like to store. Each pixel can
have intensity values from 0 to 255 (ignore color here.) Rather than labelling the images using
a string (i.e. filename) and indexing them based on filename, you would like to label them
using small images called “thumbnails”. Let’s say each thumbnail image is 64× 64 pixels.

Further suppose we want to use the thumbnail images as keys in a hash function, that is,
(key, value) is (thumbnail image, original image). Suggest a suitable hash function, namely
one that tends to avoid collisions.

last updated: 19th Apr, 2022 at 07:33 1 ©Michael Langer

COMP 250 Winter 2022 Exercises - maps and hashing

8. Canadian postal codes are of the form L1D1L2D2L3D3 where L is always a letter (A-Z) and
D is always a digit (0-9). Suppose you have a company and you wish to keep track of
customers who have that postal code, so the map might be (postal code, list of customers).
Let the letters A-Z be coded with numbers 1 to 26, for example, code(B) = 2 and let the
digits be coded by their numerical value.

(a) Define a hash function:

h(L1D1L2D2L3D3) = (
3∑

i=1

code(Li) +
3∑

i=1

Di) mod 10.

Give an example of a postal code that begins with H3A and that collides with H3A2A7.

(b) Give an example of a hash function that would never result in a collision. How large
would the hash table (array) need to be?

last updated: 19th Apr, 2022 at 07:33 2 ©Michael Langer

COMP 250 Winter 2022 Exercises - maps and hashing

Answers

1. (a) arraylist or linked list – For get(key) and remove(key), you need to scan through the list
in the worst case, so it is O(n) for a list of size n.

For put(key,value), you might think that you could just add on an entry to the end of
the list and so it would be O(1). However, that’s not correct: you need to scan the list
first to make sure that the key is not already there as part of another entry. So in fact
it would also be O(n).

(b) binary search tree – in the worst case, a binary search tree is essentially just a linked
list, namely it has height n− 1. So the same answers as above hold.

(c) heap – Here we think of each node of the heap as having a map entry, and all the usual
heap operations apply. So put(key,value) is just like ”add” and takes time O(log n).
remove(key) and get(key) cannot take advantage of the heap structure; instead one needs
to scan through the entire underlying array to find the element; so it takes time O(n) in
the worst case.

2. There are 216 ∗ 216 = 232 possible strings of length 2. The hashcode for a string s[0]s[1] is
s[0] ∗ 31 + s[1] which is less than 216 ∗ 25, that is, 221. Since there are 232 strings of length 2,
and there can be at most 221 hashcodes for these strings, it must be the case that two strings
have the same hashcode.

3. The largest hash code is (216 − 1)(x0 + x1 + · · · + xn−1) = 216(x
n−1
x−1

). One can show that if

x ≥ 2, then xn−1
x−1

< xn. (One can prove this by induction – but I’ll omit that proof here.)

Thus, the largest hash code is a number strictly less than 216xn. To know the number of
bits that we need to represent this largest hash code, recall that the number of bits needed to
represent an integer m in binary is blog2mc+1 where the brackets denote the “floor” operator.
So an upper bound on the number of bits of the hashCode is the floor of log2(2

16xn) + 1, or
16 + n log2 x + 1 or 17 + n log2 x.

For example, if x = 31 (as in Java’s String class’es hashCode method), the hashcode would be
at most 17 + 5n bits. Here is how you can think of this for n = 4. Each of the * symbols is a
bit. Note that multiplying a number by 31 (which is approximately 25) will roughly increase
the number of bits by 5. So in each row below, I’ve increased the number of bits by 5. Then
I’m adding up the rows.

**************** s[0] x 31^0

********************* s[1] x 31^1

************************** s[2] x 31^2

+ ******************************* s[3] x 31^3

********************************* hashCode(s)

last updated: 19th Apr, 2022 at 07:33 3 ©Michael Langer

COMP 250 Winter 2022 Exercises - maps and hashing

4. The Java API for String.hashCode() says that it computes the given polynomial “using
int arithmetic”. Thus, the hashcode is a number between 0 and 232 − 1 rather than −231 to
231 − 1. So you can think of taking the number mod 232 and then mapping this to the range
−231 to 231 − 1 as was illustrated back in lecture 3 when we discussed Java primitive types.

5. Start with an empty hash set. Then, iterate through the list and add each element to a
hash set. If the element is already in the hash set, then you have found an element that is
duplicated. If you wish to store the number of duplicates, you can use a hash map where the
value stored for each element is the number of copies of the element. This method is O(n)
because there are n elements in the list and hashing each of them takes O(1) time.

6. First, a BST typically gives slower access than a hash table. Why? With a BST, we search
for a key by following a path from the root towards the leaves. For each node in the BST we
encounter, we do a key comparison (<,=, >). If the BST is balanced (best case), then it will
take us O(log n) steps to find a key, or determine that there is no matching key, where n is
the number of keys in the BST. So, for example, if n = 2000 and the tree is balanced, then
it will take us on average roughly 10 comparisons to find an item (i.e. 2000 ≈ 211, and about
that half the nodes in a complete binary tree are leaves.) If the BST is not balanced1, then it
will take longer to find the key. This is faster than using a linked list, but still slow relative
to a hash table. Why? With hashing, h(key) provides a hash value which is a number from
0 to m− 1 where m ≈ n. Given a key, k, we compute h(k) using some formula or algorithm,
and then we go directly to the entry h(k) in the hash table and search through a (typically
very short) list for key k and so we have O(1) access. (You might have argued that hashing
is more expensive because you need to compute hash values. However, note that the BST
requires a comparison to be made at each node, and these comparisons take time.)

Another way to think about the difference is to note that a binary search tree does a sequence
of comparisons, i.e. each comparison returns one of three values (<,=, >), which is relatively
little information. (We only need 2 bits to specify one of three values.) By contrast, a hash
function gives you logm bits of information, namely it specifies one of m values. You still
need to scan the entries within the bucket at index h(k). But if the hash function does a good
job, then most of the buckets will have very few entries.

So is there any advantage of a binary search tree over the hash table? Yes! A BST is only used
if the elements are comparable. In this case, you might sometimes want to list the elements
in order. The BST is great for that. You can do an in-order traversal. You can also list a
range of elements (by doing a traversal, and only listing the elements in the range). With a
hash table, one doesn’t represent the key orderings at all. So even if elements are comparable,
there is no way to read off an ordered list of keys.

1keep in mind that it takes extra work to keep it balanced – you will learn about balanced binary search trees in
COMP 251

last updated: 19th Apr, 2022 at 07:33 4 ©Michael Langer

COMP 250 Winter 2022 Exercises - maps and hashing

7. Let’s make a hash table with m = 2000 entries so that we are sure there will be plenty of
buckets with no elements (and hence collisions are relatively rare).

For the hash function, we need to map the 64× 64 pixel intensity values to a number larger
than m = 2000. To do so, we could define a hash code to be the sum of the intensity values
at the pixels. Assume the average intensity value is 128, we would get a number on average
of 64 ∗ 64 ∗ 128 which is much bigger than m = 2000. Then, to get the hash value, we could
take the sum of the intensity values and compute “sum mod m” where the m was mentioned
above.

8. (a) h(H3A2A7) = (8 + 3 + 1 + 2 + 1 + 7) mod 10 = 2

So, you need to come up with a postal code D2L3D3 such that D2 + code(L3) +D3 mod
10 is the same as 2 + 1 + 7 mod 10. The latter is 0. So, for example, if you take ”3A6”,
then D2 + code(L3) + D3 mod 10 is 0, and h(H3A3A6) = (8 + 3 + 1 + 3 + 1 + 6) mod
10 = 2

(b) One simple solution is to use base b = 26 and define:

h(L1D1L2D2L3D3) ≡ code(L1) + D1b + code(L2)b
2 + D2b

3 + code(L3)b
4 + D3b

5

In these cases, the postal code Z9Z9Z9 would give the largest hash value, and you can
plug in the numbers and letters to get the largest value. That is how big the hash table
would need to be for this hash code.

You can be more clever and use a smaller hash table, by noticing that there are 103 ∗ 263

possible postal codes. You could come up with a hash function that maps each postal
code to one of the numbers from 0 to 103 ∗ 263 − 1. For example,

h(L1D1L2D2L3D3) ≡ (D1+D2∗10+D3∗102)+103∗(code(L1)+code(L2)∗26+code(L3)∗262).

The idea here is that the three letters have at most 263 triplets, which we can code with
the numbers 1 to 263 (and this code is in base 10). We can then multiply each of these
numbers by 103, freeing up the three digits. These digits can be filled with the code for
the Di’s.

last updated: 19th Apr, 2022 at 07:33 5 ©Michael Langer

