Abstract Data Types (ADT)

We began our discussion of lists a few lecture ago by defining it abstractly as a set things of a certain type and a set of operations that are applied to these things. Stated in this general way, a list is an abstract data type (ADT). We will see two more ADT's in the next few lectures, namely the stack and the queue. The idea of an ADT will come up many times in this course.

Stack ADT

You are familiar with stacks in your everyday life. You can have a stack of books on a table. You can have a stack of plates on a shelf. In computer science, a stack is an abstract data type (ADT) with two operations: push and pop. You either push something onto the top of the stack or you pop the element that is on the top of the stack. A more elaborate ADT for the stack might allow you to check if the stack has any items in it (isEmpty) or to examine the top element without popping it (top, also known as peek).

Note that a stack is a kind of list, in the sense that it is a finite set of ordered elements. However, it is restricted type of list since it has fewer operations you can apply on it. Unlike a list, a stack generally does not allow you to directly access the i-th element.

Data structure for a stack

What is a good data structure for a stack? A stack is a list, so its natural to use one of the list data structures.

If you use an array list, then you should push and pop at the end of the list with addLast() or removeLast. The reason is that if you add or remove from the front of an array list, you need to shift all the other elements each time which is inefficient. If you use a singly linked list to implement a stack, then you should push and pop at the front of the list, not at the back. The reason (recall) is that removing i.e. popping from the back of a singly linked list would be inefficient i.e. you need to walk through the entire list to find the node that points to the last element which you are popping. For a doubly linked list, it doesn’t matter whether you push/pop at the front or at the back. Both would be good.

Example 1

Here we make a stack of numbers. We assume the stack is empty initially, and then we have a sequence of pushes and pops.

push(3)  
push(6)  
push(4)  
push(1)  
pop()   
push(5)  
pop()   
pop()
The elements that are popped will be 1, 5, 4 in that order, and afterwards the stack will have two elements in it, with 6 at the top and 3 below it. Here is how the stack evolves over time:

```
  1   5
  4   4   4   4
  6   6   6   6   6   6
  3   3   3   3   3   3   3
```

Example 2: Balancing parentheses

It often occurs that you have a string of symbols which include left and right parentheses that must be properly nested or balanced. (In this discussion, I will use the term “nested” and “balanced” interchangeably.) One checks for proper nesting using a stack.

Suppose there are multiple types of left and right parentheses, for example, (, ), {, }, [, ]. Consider the string:

```
( ( [ ] ) ) [ ] { [ ] }
```

You can check for balanced parentheses using a stack. You scan the string left to right. When you read a left parenthesis you push it onto the stack. When you read a right parenthesis, you pop the stack (which contains only left parentheses) and check if the popped left parenthesis matches the right parenthesis. For the above example, the sequence of stack states would be as follows.

```
[  
( ( ( ( ( ( [ { {  
- - - - - - - - - - - - 
```

and the algorithm terminates with an empty stack. So the parentheses are properly balanced.

Here is an example where each type of parenthesis on its own is balanced, but overall the parentheses are not balanced.

```
( ( [ ] ) [ ] ) { [ ] }
```

```
[  
( ( ( ( ( ( [ { {  
--- --- --- --- X since next symbol is ")" which doesn't match top
```

The basic algorithm for matching parentheses is shown below. We assume the input has been already partitioned ("parsed") into disjoint tokens. For this example, a token can be one of the following:

- a left parenthesis (there may be various kinds)
- a right parenthesis (there may be various kinds)
- a string not containing a left or right parenthesis (operators, variables, numbers, etc)

ALGORITHM: CHECK FOR BALANCED LEFT AND RIGHT PARENTHESES
INPUT: SEQUENCE OF TOKENS
OUTPUT: TRUE OR FALSE (I.E. BALANCED OR NOT)

while (there are more tokens) {
    token = get next token
    if token is a left parenthesis
        push(token)
    else { // token is a right parenthesis
        if stack is empty
            return false
        else {
            pop left parenthesis from stack
            if popped left parenthesis doesn't match the right parenthesis
                return false
        }
    }
}

Example 3: HTML tags

The above problem of balancing different types of parentheses might seem a bit contrived. But in fact, this arises in many real situations. An example is HTML tags. If you have never looked at HTML markup before, then open a web browser right NOW and look at “view → page source” and check out the tags. They are the things with the angular brackets.

Tags are of the form `<tag>` and `</tag>`. They correspond to left and right parentheses, respectively. For example, `<b>` and `</b>` are “begin boldface” and “end boldface”. HTML tags are supposed to be properly nested. For example, consider

`<b> I am boldface, <i> I am boldface and italic, </i> </b>
<i> I am just italic </i>`

The tag sequence is `<b><i></i></b><i></i>` and the “parenthesis” are indeed balanced, i.e. properly nested. Compare that too

`<b> I am boldface, <i> I am boldface and italic </b> I am just italic </i>`

whose tags sequence is `<b><i></i></b><i></i>` which is not properly balanced. The latter is the kind of thing that novice HTML programmers write. It does make some sense, if you think of the tags as turning on or off some state (bold, italic). But the HTML language is not supposed to allow this. And writing HTML markup this way can get you into trouble since errors such as a forgotten or extra parenthesis can be very hard to find.

Many HTML authors write improperly nested HTML markup. Because of this, web browsers typically will allow improper nesting. The reason is that web browser programmers (e.g. google employees...
who work on Chrome) want people to use their browser and if the browser displayed junk when trying to interpret improper HTML markup, then users of the browser would give up and find another browser.

See [http://www.w3schools.com](http://www.w3schools.com) for basic HTML tutorials (and other useful simple tutorials).

**Example 4: stacks in graphics**

The next example is a simple version of how stacks are used in computer graphics. Consider a drawing program which can draw unit line segments (say 1 cm). Suppose the pen tip has a *state* \((x, y, \theta)\) that specifies its \((x, y)\) position on the page and an angular direction \(\theta\). This is the direction in which it will draw the next line segment (see below). The pen state is initialized to be \((0,0,0)\), where \(\theta = 0\) is in the direction of the \(x\) axis.

Let’s say there are five commands:

- **D** - draws a unit line segment from the current position and in the direction of \(\theta\), that is, it draws it from \((x_0, y_0)\) to \((x_0 + \cos \theta, y_0 + \sin \theta)\). It moves the state position to the end of the line just drawn. Recall \(\cos(0) = 1\), \(\cos(90) = 0\), \(\cos(180) = -1\), \(\sin(0) = 0\), \(\sin(90) = 1\), \(\sin(180) = 0\), ...

- **L** - turns left (counter-clockwise) by 90 degrees

- **R** - turns right (clockwise) by 90 degrees

- **[** - pushes the current state onto the stack

- **]** - pops the stack, and current state ← popped state

See the slides for a few examples.

Note that this simple language doesn’t allow one to move the pen without drawing, except by returning to a position that the pen had been in previously. This means that the language can only be used to draw connected figures. To draw disconnected figures, you would need another instruction e.g. M could move the pen forward by a distance one without drawing.

**Example 5: the “call stack”**

We have been discussing stacks of things. One can also have a stacks of tasks. Imagine you are sitting at your desk getting some work done (main task). Someone knocks on your door and you let them in and chat. While chatting, the phone rings and you answer it. You finish the phone conversation and go back to the person in your office. Then maybe there is another interruption which you take care of, return to work, etc. In each case, when you are done with a task, you ask yourself "what was I doing just before I began this task?".

A similar stack of tasks occurs when a computer program runs. The program starts with a **main** method. The main method typically has instructions that cause other methods to be called. The program “jumps” to these methods, executes them and returns to the main method. Sometimes these methods themselves call other methods, and so the program jumps to these other methods, executes them, returns to the calling method, which finishes, and then returns to main.

A natural way to keep track of methods and to return to the ‘caller’ is to use a stack. Suppose **main** calls method **mA** which calls method **mB**, and then when **mB** returns, **mA** calls **mC**, which eventually returns to **mA**, which eventually returns to **main** which then finishes.
Class Demo {
    void mA() {
        mB();
        mC();
    }
    void mB() {} 
    void mC() {}
    void main() {
        mA();
    }
}

The stack evolves as follows:

<table>
<thead>
<tr>
<th>B</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>main</td>
<td>main</td>
<td>main</td>
<td>main</td>
<td>main</td>
<td>main</td>
</tr>
</tbody>
</table>

Also see the slides for an example using the SLinkedList code from the linked list exercises. I briefly showed how the TestSLinkedList calls the addLast() method of the LinkedList class, and I show the Eclipse call stack. When you use Eclipse in debugger mode, and you set breakpoints in the middle of methods, there is a panel that shows you the call stack.