
COMP 250

Lecture 8

Objects & Classes 3:
packages,

access modifiers: public, private
UML class diagram

Jan. 24, 2022

1

Packages (recall lecture 4)

2

java.lang

String.java Byte.java

Math.java

demos

Dog.java Car.java

java.util

LinkedList.java

HashMap.java

a3_2019

Datum.java KDTree.java

Double.java

Date.java

A package is a set of classes. The two on left are examples from the standard Java library.
The two on right are examples of my own packages.

Arrays.java

Point2D.java Person.java

package demos;
class Point2D{

:
}

Point2D.java

3

We put a package statement at the first line of our class definition file.
This says which package the class belongs to.

Packages and File Folders (recall lecture 4)

Packages are organized as folders on your computer file system.
In this Eclipse example, there is a project name (“250”) and the .java files are in the directory:

C:\Users\MichaelLanger\Dropbox\Eclipse\250\src\demos\Point2D.java

4

src

a1demos a2

Point2D (other classes)
TestArithmetic

250

Eclipse

....

Accessing a class in another package

If class A wants to construct or reference a class B object and if
class B is in a different package, then class A must tell the
compiler where to find class B.
It can do so in three ways:

1) Specify the entire path.

For example, suppose class A is in the a1 package and it wants
to reference Book from the demos package. Then, it can fully
specify the class name (relative to src).

demos.Book myBook = new demos.Book();

5

src

a1demos a2

Book A

6

2) Include an import statement (in class A), namely import class B:

e.g. import demos.Book;

The import statement comes after the package statement. It tells the compiler that
the class Book is found in the package demos.

Book myBook = new Book();

Advantage of import: it saves typing the full class name.

Disadvantage of import: when we read code locally and we see a class name (e.g.
variable type declaration), we won’t necessarily know what package that class
belongs to.

7

3) Import an entire package. Example (in class A):

import demos.*;
import java.util.*

Class A now can refer to any class (B) that is in one of these imported packages.

No, there cannot be name conflict. e.g. you cannot import a class B from
demos when compiling a class whose package has a class with the name B.

Automatic imports

For convenience, the Java compiler automatically imports all classes from two
packages:

• the current package

• the java.lang package

The latter contains classes Math, String, … so no import statement is need to
use these classes.

8

9

The discussion on the previous slides suggests that if you create a class A, you can access
any other class B just by specifying its full path or by importing it, namely you can
construct and reference objects of class B, and invoke their methods.

That’s not the whole story, however.

Each class (B) also needs to define where it and each of its fields and methods is visible.
There are three levels of visibility: (and a fourth level that I will mention in a few weeks.)

• visible only from within that class (B) (private)
• visible from any class A within the same package (by default)
• visible from any class A in any package (public)

Visibility (or Access) modifiers

10

Visibility
modifier in B

A = B A & B in same
package

A & B in different
packages

public

(package)
private

Classes can have either public or the default (package) modifier, but not private.

There is also a protected modifier, which I will mention in a few weeks.

Suppose an instruction in class A refers to a field or method in class B (static or not)…

11

To specify “package visibility”, we don’t use any modifier at all, as in most of the
examples in previous lectures.

The keyword package is used instead for stating the package name of the class.

package demos;

class Dog {

}

Dog.java

If we wrote public
here, then the class Dog
would be visible from
any package.

Examples….

12

Does the compiler allow this declaration ?
 Yes, because class Dog has package visibility and both

classes are in the same package.

package demos;

class Dog {
⋮

}

package demos;

class Owner {
Dog d;
⋮

}

Dog.java Owner.java

Examples….

13

Does the compiler allow this ?
 No, because class Dog has package visibility only.

(The error is in the import statement.)

package demos;

class Dog {
⋮

}

package a1;
import demos.Dog;

class Tester {
Dog d;
⋮

}

Dog.java Tester.java

package visibility

Examples….

14

Does the compiler allow this ?
 Yes, because class Dog is declared to have public

visibility and Dog is imported.

package demos;

public class Dog {
⋮

}

package a1;
import demos.Dog;

class Tester {
Dog d;
⋮

}

Dog.java Tester.java

package demos;

public class Dog{
public String name;

:
}

package a1;
import demos.Dog;

class Tester {
public static void main(…){

Dog myDog = new Dog();
myDog.name = “Buddy”;

}

Does the compiler allow this ?
 Yes, since name has public visibility.

Examples….

15

Dog.java Tester.java

package demos;

public class Dog{
private String name;

:
}

package a1;
import demos.Dog;

class Owner {
public static void main(…){

Dog myDog = new Dog();
myDog.name = “Buddy”;

}

Does the compiler allow this ?
 No, since field name has private visibility

(even though the Dog class is public).

Examples….

16

Dog.java Tester.java

package demos;

public class Dog{
private String name;

public void setName(String name){
this.name = name;

}
}

package a1;
import demos.Dog;

class Tester {
public static void main(…){

Dog myDog = new Dog();
myDog.setName(“Buddy”);

}

Does the compiler allow this ?
 Yes, since method setName has public visibility

(even though the field name is private).

Examples….

17

Dog.java Tester.java

package demos;

public class Dog{
private String name;

private void myHelper(){
// something useful

}
}

package a1;
import demos.Dog;

class Tester {
public static void main(…){

Dog myDog = new Dog();
myDog.myHelper();

}

Does the compiler allow this ?
 No, since method myHelper has private visibility.

Examples….

18

Dog.java Tester.java

Exercise
The Point2D class was previously defined with package visibility.
Create a second class – say Test -- in a different package. Give it the main
method below.
Correct the compile time errors. You will need to change both classes. Do it two
ways, namely with or without using an import statement.

19

public static void main(String[] args) {

Point2D p1 = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6) ;

System.out.println(distanceBetween(p1, p2));
System.out.println(p1.distanceTo(p2));

}

Getter and Setter Methods (for “Encapsulation”)

“getters” = “accessors” // don’t change field values

“setters” = “mutators” // do change field values

Class fields (static or non-static) are typically private, although they are allowed to be public or package
visible.

In the Java API, only public fields and methods are listed. The fields are often constants e.g. Math.PI

The Math class is final. I will cover the final modifier later.

20

Motivation for getters and setters

Suppose some Java application allows users to
enter their first and last name.

public class User {
public String lastName;
public String firstName;

User(String first, String last){
firstName = first;
lastName = last;

}
}

Q: What is the problem with the above ?

A: We don’t want to allow this (in another class).

User u = new User(“Sue”,”Lin”);
u.lastName = “&$(!”;
u.firstName = “---!”;

and we don’t want this

User u = new User(“!!!”,”?*X”);

21

22

A better approach is to control what users are allowed to enter as their first and last name.

public class User {
private String lastName;
private String firstName;

User(String last, String first){
// call setters

setLastName(last); // these methods also can be called
setFirstName(first); // without the constructor

}

public setFirstName(String first){
// This method verifies that the first name satisfies certain rules.

}
public setLastName(String last){

// This method verifies that the last name satisfies certain rules.
}

}

UML Diagrams (intro only)

Unified Modeling Language (UML) provides a set of standard diagrams for
graphically depicting what is in a class, and relationships between classes.
This is a central topic in COMP 303 Software Design.
Here we’ll briefly discuss just how to represent what’s in a class.

23

Class name

Attributes/Fields

Methods

Example – Dog Class

Fields/Attributes
• String name
• Person owner
• static int numDogs

Constructors
• Dog(String name)
• Dog(String name, Person owner)

Accessors and Mutators
• getName
• getOwner
• setName
• setOwner
• static getNumDogs

Other Methods
• eat()
• bark()
• hunt()

24

Dog
- name : String
- owner : Person
- numDogs : int

<< constructors >>
+ Dog(name: String)
+ Dog(name: String, owner: Person)

<<accessors>>
+ getName() : String
+ getOwner() : Person
+ getNumDogs() : int

<<mutators>>
+ setName(name : String)
+ setOwner(owner : Person)

<<custom methods>>
+ eat()
+ bark(numOfTimes : int)
+ hunt(): Rabbit

25

+ public
- private

The type is listed after the
variable name.

Static fields and methods
are underlined.

ASIDE: I will use UML
diagrams sometimes, but I
will not examine you on
them.

Coming up…

Lectures

Wed. Jan. 26

ArrayLists

Fri. Jan. 28

Singly Linked Lists

Assessments

Fri. Jan. 28

Quiz 1 (lectures 1-7, including the leftover
part at start of today’s video)

- practice quiz posted today

Assignment 1 to be posted
- you will have 2 weeks to do it

26

