COMP 250

Lecture /

Objects & Classes 2:

null, aliasing,
static, variable scope

Jan. 21, 2022

Reference variables and objects (“instances”)

int[] intArray

String s

A WNEFELO

Double x

Point2D pl

3.75 -4598 4+

We say that these objects are instances of their class.

Keyword null

When a reference variable does not reference any object, we say the value of this
variableisnull. Forexample,

Point2D s H—ratge—iattiatired—to ot (typo, not initialized)
P = new Point2D();
p = null; // we can assign a reference to null

The original object (not shown) would be garbage collected .

| will draw a reference variable with value null sometimes as follows:

P —— null

Variable initialization

class Test {
int il; // initialized by default to 0
String sl; // 1initialized by default to null
double[] dArrl; // 1initialized by default to null

myMethod () {

int 12; // not initialized !
String s2; // not initialized !
double[] dArry2; // not initialized !
// bla bla
¥
Test () {} // constructor does not need to initialize

// the fields, since they have default values
// (see above)

Keyword null
" E bl is declarec_ts default vale: |

[Correction of above statement (Feb. 4) — see previous slide :] When we define reference
variables as fields in a class, they are automatically assigned a default value null.

Point2D oX; P —— null
int[] 1ATrr; iArr —— null
String S; S —— null
Double X; X —— null
Integer 1; i ——» null

Example: no argument constructor

class Demo {

double [] dArray;
Integer k; dArray —— null
String S;

k —— null
pemo O L s — -+ null
//

The no-argument constructor initializes the reference variables to have value null.
If there is no constructor, then the default constructor plays the same role.

“Null pointer exception” (term pre-dates Java)

If we try to use a reference variable that has the value null in a case where the program
expects an object, we will get a runtime error calleda NullPointerException.

int[] intArray = null;
String s = null; —
Double X = null;

If we just declare the variable but don’t initialize,
then we get a compiler error.

intArray[0] = 3;
char c = s.charAt(0) ; — Here we get the runtime error for all three.
double y = x.doubleValue() ;

COMP 250

Lecture /

Objects & Classes 2:

aliasing,

Jan. 21, 2022

Aliasing

In general, “aliasing” means that we have different names for the same object (e.g. person).

Prince Rogers Nelson

Prince

The Artist Formerly Known as Prince

. (unpronounceable)

Aliasing: recall example from lecture 5

int[] arrl = {3, 5, 2, -7, 6};

int[] arr2 = new 1nt[arrl.length];
arr2 = arrl;
arrl arr?
//
0 3 0 0 _
1 5 1 0 Now, nothing references
2 2) 0 this array. It becomes
3 7 3 0 “garbage”.
4 6 4 0

This was an example of aliasing.

Similar example...

Point2D pl = new Point2D(23, 85);
Point2D p2 = new Point2D(5, o ;

pl P2

_ int x 23 int x

int vy 85 int y

What does this instruction do ?

Similar example...

Point2D pl = new Point2D(23, 85);

Point2D p2 = new Point2D(5, o ;

The Point2D object on the left is “aliased”.

—1”| int x 23 —

int y 85

The Point2D object on the right will be garbage collected (eventually).

int x

int vy

12

Aliasing and the == operator

For reference types, the == operator checks if its two operands are/reference the
same object.

Point2D pl = new Point2D(23, 85);

Point2D p2 = new Point2D(5, 6); // pl == p2 is false
p2 = pl; // pl == p2 is true
—1 " | int x 23 ¢ A int x 5

int y 85 int y 6

13

A slightly different example: The two objects have the same x and y values,
but they are different objects:

Point2D pl = new Point2D(5, 6);
Point2D p2 = new Point2D(5, 6);

pl P2

1 » int x 5 int x 5

int vy 6 int y 6

p2 == pl is false, eventhough the fields of the two objects have same values.

Point2D pl
Poilnt2D p?2

pz2 = pl;

p2.x = 400;
pl

pl.x == 400

p2.x == 400

23,
Sy

P2

= new Point2D
= new Point2D
int x 400
int y 85

IS true.

IS true.

int x

int y

15

Point2D (
Point2D (

23, 85);
S, 6) ;

Point2D pl = new
Point2D p2 = new
p2 = pl;
p2.x = 400;
p2 = null;

pl

1, | int x 400

int vy 85

pl.x == 400 isstill true.

null

p2.x isundefined (null pointer exception).

int x

int vy

16

Aliasing does not occur with primitive types.

int 1 = 23; 1
int k = 85;
k
The following code copies the int value.
There are no references (arrows) here.
k = 1; .
1
k

23

85

23

23

COMP 250

Lecture /

Objects & Classes 2:

static,

Jan. 21, 2022

static modifier

When designing classes, certain fields and methods are naturally associated with objects
(instances), whereas other fields and methods are naturally associated with the class itself.

To define the latter, we use the static modifier.

For example, suppose some class generates many Point2D objects, and stores them at
various positions in an array.

Point2D arr = new Point2D[1000 1];

arr[23] = new Point2D(23, 85) ;
arr[732] = new Point2D(5, o6) ;
arr[63] = new Point2D(76, 15) ;

Suppose we want to keep track of how many objects there are.

We define a “class field” (or “class variable” or “static variable”) that counts the number
of objects of that class. Such a field/variable is declared with the static modifier.
It is associated with the class, rather than with any particular object.

class Point2D {

int X; // instance variable (or field)
int Vs //
static int numberOfPoint2D; // static variable (class field)

Point2D(int x, 1nt y) {
this.x = x;
this.y = y;
numberOfPoint2D += 1 ; // increment

}

Any field variable (static or not) is initialized to a default value (0, for int), unless the
constructor initializes it.

We can also define static methods (or “class methods”).

One common static methodis main () .

class Point2D {

int X,
int Vs
//

public static void main(String[] args) {

// we will discuss what ‘public’ means next lecture

}

21

Here are two static methods that we might define for the Point 2D class.

static int getNumberOfPoint2D () {
return (numberOfPoint2D);

}

static double distanceBetween (Point2D pl, Point2D p2) {

return(Math.sqgrt (
(pl.x — p2.x) * (pl.x — p2.x)
+ (pl.y - p2.y) * (pl.y - p2.y)));

These methods is not associated with any particular Point 2D object.

22

Compare the Point2D.distanceBetween () method on the last slide with the
following instance (non static) method :

double distanceTo(Point2D p) {

return(Math.sqgrt (
(this.x - p.x) * (this.x - p.x)
+ (this.y - p.y) * (this.y - p.y)))7

The above method would be called by (or “invoked by”) a particular Point2D object.
It would calculate the distance from this point to another Point2D object.

Here is an example that combines the above. The two methods compute the same value.

class Point2D {
int X; //
int Vs
// put methods defined in previous slides here

public static void main (String[] args) {

Point2D pl = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6) ;

System.out.println(distanceBetween(pl, p2));
System.out.println(pl.distanceTo(p2));

In the example below, we call the methods from a different class Test.
This class’es main method must be written slightly differently: now we have to specify
the class Point2D that the static method belongs to.

This was unnecessary on the previous slide, because we were calling a method that
belonged to the Point 2D class.

class Test {
public static void main (String[] args) {

Point2D pl = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6) ;

System.out.println(Point2D.distanceBetween(pl, p2))’
System.out.println(pl.distanceTo(p2)),

public class ExerciseToMiles {
final static double KM TO MILES = 0.6214;

public static double toMiles (double km) {

return km * KM TO MILES;

public static void main (String[] args) {
System.out.println(toMiles(80.0));

public class Test {

public static void main(String[] args) {

System.out.println(ExerciseToMiles.toMiles (80.0)

) ;

26

COMP 250

Lecture /

Objects & Classes 2:

variable scope

Jan. 21, 2022

Scope of a Variable (in Java)

Informal definition: the “scope” of a variable in a class is the part of the code
where the name of that variable is well defined.

Different kinds of variables have different scopes :

* instance fields/variables (non-static)

class fields/variables (static)

local variables inside a method

loop variable

method parameters

An instance variable (field) is visible from any non-static method within the class.
The field belongs to instances (objects) of the class.

class Demo {
int k; // instance variable (field)

void myMethod () {

k = 3; // we can instead write this.k = 3;

static wvold myStaticMethod/ () {
k = 3; // compiler error

A static variable (field) is visible from any method within the class.

class Demo {
static int k; // 1nstance variable (field)

void myMethod () {

k = 3;
}

static wvoilid myStaticMethod/() {
k = 3;
}

}
[UPDATED JAN. 28]

We can write the instructioninmyMethod as this.k = 3 although we geta
warning. However, if we write the instruction inmyStaticMethod thatway, we get a
compiler error. Try it yourself!

. . . 30
We can write both of these instructions as Demo.k = 3;

A local variable is defined within a method body.
It’s scope is determined by curly brackets, and only below the variable definition.

class Demo {
int k; // instance variable (field)

void myMethod () {

int ml; // ml scope starts

int m2; // m2 scope starts
} // m2 scope ends

} // ml scope ends

31

A loop variable is defined only with the loop itself.

class Demo {
void myMethod () {
for (int 1 = 0; 1 < 5; 1i++){
System.out.println (i)

} //

i = 15; // compiler error

scope 1 ends

32

A method parameter is visible anywhere within the method.

class Demo {
int k;

void myMethod (int J) {
System.out.println(j) ;

j = 3;

}

One can (re-)assign values to the parameter variable.
So it behaves like a local variable (next slide).

Examples where the same variable name is defined more than once.

class Demo {
int k; // instance variable (field)

void myMethod() {
int k = 5; // local variable

this.k = 27;

}

They are two completely different variables!
When the myMethod exits, the local variable k is no longer defined.
But the Demo object’s field (this . k) is still defined and keeps its value (27).

34

Examples where the same variable name is defined more than once.

class Demo {

void myMethod(int k) {

int k = 5; // compiler error

The reason for the compiler error is that there would be an ambiguity.
The parameter k cannot have the same name as a local variable.

35

A few more examples...
if time permits
(8-10 minutes)

otherwise finish it up next time

Scope of a Variable (in Java)

Informal definition: the “scope” of a variable in a class is the part of the code
where the name of that variable is well defined.

Different kinds of variables have different scopes :

* instance fields/variables (non-static)

class fields/variables (static)

local variables inside a method

loop variable

method parameters

Tricky Example:

class TestMain {

static void myMethod (String s) { —] , ,
. : S | “inside"
s = "lnside";
}
public static void main (String[] args) {
String s0 = Y“outside"; 0 — _
myMethod (s0) ; S outside

System.out.println (s0);

Q: What gets printed ?

38

Tricky Example:

class TestMain {

static void myMethod (String s) {

s = "inside"; 5
b7
public static void main (String[] args) {

String s0 = “outside";

myMethod (s0) ; <0

System.out.println (s0);

“outside"

When we first enter myMe thod and before we assigh “inside” s, the method parameter
variable s takes the value that is passed to it, namely the argument sO of the caller method.

39

Tricky Example:

class TestMain {
static void myMethod (String s) {
s = "inside";
b

public static void main(String[] args) {

String s0 = Y“outside";
myMethod (s0) ;

System.out.println (s0);

}
s is then reassigned so that it references the string “inside™.

sO

“inside"

“outside"

40

Tricky Example:

class TestMain {
static void myMethod (String s) {
s = "inside";

b

public static void main(String[] args) {

String s0 = “outside"; . .
myMethod (s0) ; S outside

System.out.println(s0) ;

}

When the method exits and returnstomain, sO hasitsinitial value. Indeed it never lost

that value.) So “outside” is printed. "

Recall lecture 5: Passing an array to a method

static void demoPassArray (double[] doubleArr) {

doubleArr[0] = 23.45; doubleArr

Suppose you call this method in the code below:

arr ~

double [] arr = {3.0, 5.2, 2.1, =-7.78, 6.0};
demoPassArray (arr);

System.out.print (arr[0])

Note the difference between this example and the previous one: here we
aren’t creating a new array.

A WNEFELO

23.45

5.2

2.1

-7.78

6.0

Slight variation (tricky): Passing an array to a method

static void demoPassArray (double[] doubleArr) {

doubleArr = new double[]{1.0, -5.2 }; doubleArr

// yes, that’s the syntax needed

arr

Suppose you call this method in the code below:

double [] arr = {3.0, 5.2, 2.1, =-7.78, 6.0};
demoPassArray (arr);

System.out.print (arr[0]);

What does it print ?

43

Slight variation (tricky): Passing an array to a method

static void demoPassArray (double[] doubleArr) {

doubleArr
}
. . arr ~
Suppose you call this method in the code below: \
0 3.0

double[] arr = {3.0, 5.2, 2.1, =-7.78, 6.0}; 1 5.2

. 2 2.1
demoPassArray (arr); 3 —3
System.out.print (arr[0]); 4 6.0

When we first enter demoPassArray and before we construct the new array, the method
parameter variable doubleArr references the one existing array. 44

Slight variation (tricky): Passing an array to a method

static void demoPassArray (double[] doubleArr) {

doubleArr = new double[]{1.0, -5.2 }; doubleArr |

1.0
5.2
. . arr —
Suppose you call this method in the code below: \
0 3.0
double[] arr = {3.0, 5.2, 2.1, =-7.78, 6.0}; 1 5.2
. 2 2.1
demoPassArray (arr); 3 —3
System.out.print (arr[0]); 4 6.0

The parameter doubleArr behaves like a local variable. This local variable will reference a
new array. 45

Slight variation (tricky): Passing an array to a method

static void demoPassArray (double[] doubleArr) {
doubleArr = new double[]{1.0, -5.2 }; doubleArr |
} 1.0
5.2
. . arr ~
Suppose you call this method in the code below: \
0
double[] arr = {3.0, 5.2, 2.1, =-7.78, 6.0}; 1 5.2
. 2 2.1
demoPassArray (arr); 3 —3
4 6.0

46

Coming up...

Lectures

Assessments

Mon.

Wed.

Fri.

Jan. 24
Visibility modifiers (private & public)

Jan. 26
ArraylLists

Jan. 28
Singly Linked Lists

Fri. Jan. 28

Quiz 1 (lectures 1-7 i.e. today)
- | will post a practice quiz by Monday

Assignment 1 to be posted

- you will have 2 weeks to.do it

