
COMP 250

Lecture 7

Objects & Classes 2:
null, aliasing,

static, variable scope

Jan. 21, 2022

1

Reference variables and objects (“instances”)

2

0
1
2
3
4

32
-5
4335
234
-12

int[] intArray
String s

“3.75”

Double x

3.75

Integer i

-4598

0

0

int x

int y

Point2D p1

We say that these objects are instances of their class.

Keyword null

3

When a reference variable does not reference any object, we say the value of this
variable is null. For example,

Point2D p; // value initialized to null (typo, not initialized)

p = new Point2D();

p = null; // we can assign a reference to null

The original object (not shown) would be garbage collected.

I will draw a reference variable with value null sometimes as follows:

nullp

Variable initialization

4

class Test {
int i1; // initialized by default to 0
String s1; // initialized by default to null
double[] dArr1; // initialized by default to null

myMethod(){
int i2; // not initialized !
String s2; // not initialized !
double[] dArry2; // not initialized !
// bla bla

};

Test() {} // constructor does not need to initialize
// the fields, since they have default values
// (see above)

}

Keyword null

5

Point2D p;

int[] iArr;

String s;

Double x;

Integer i;

When any reference type variable is declared, its default value is null.

[Correction of above statement (Feb. 4) – see previous slide :] When we define reference
variables as fields in a class, they are automatically assigned a default value null.

null

nulls

x

iArr

null

nullp

i null

Example: no argument constructor

6

class Demo {
double[] dArray;
Integer k;
String s;

Demo(){ };

// :
}

The no-argument constructor initializes the reference variables to have value null.
If there is no constructor, then the default constructor plays the same role.

null

nullk

s

dArray

null

“Null pointer exception” (term pre-dates Java)

7

int[] intArray = null;
String s = null;
Double x = null;

intArray[0] = 3;
char c = s.charAt(0);
double y = x.doubleValue();

If we try to use a reference variable that has the value null in a case where the program
expects an object, we will get a runtime error called a NullPointerException.

If we just declare the variable but don’t initialize,
then we get a compiler error.

Here we get the runtime error for all three.

COMP 250

Lecture 7

Objects & Classes 2:
null, aliasing,

static, variable scope

Jan. 21, 2022

8

Aliasing

9

• Prince Rogers Nelson

• Prince

• The Artist Formerly Known as Prince

• (unpronounceable)

In general, “aliasing” means that we have different names for the same object (e.g. person).

Aliasing: recall example from lecture 5

10

int[] arr1 = {3, 5, 2, -7, 6};
int[] arr2 = new int[arr1.length];

arr2 = arr1;

0
1
2
3
4

3
5
2
-7
6

0
1
2
3
4

0
0
0
0
0

Now, nothing references
this array. It becomes
“garbage”.

arr1 arr2

This was an example of aliasing.

Similar example...

11

Point2D p1 = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6 ;

p2 = p1;

What does this instruction do ?

23

85

int x

int y

p2

5

6

int x

int y

p1

Similar example...

12

Point2D p1 = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6 ;
p2 = p1;

The Point2D object on the left is “aliased”.

The Point2D object on the right will be garbage collected (eventually).

23

85

int x

int y

p2

5

6

int x

int y

p1

Aliasing and the == operator

13

Point2D p1 = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6); // p1 == p2 is false

p2 = p1; // p1 == p2 is true

For reference types, the == operator checks if its two operands are/reference the
same object.

23

85

int x

int y

p1 p2

5

6

int x

int y

14

Point2D p1 = new Point2D(5, 6);
Point2D p2 = new Point2D(5, 6);

p2 == p1 is false, even though the fields of the two objects have same values.

A slightly different example: The two objects have the same x and y values,
but they are different objects:

5

6

int x

int y

p2

5

6

int x

int y

p1

15

Point2D p1 = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6);
p2 = p1;
p2.x = 400;

p1.x == 400 is true.
p2.x == 400 is true.

400

85

int x

int y

p1 p2

5

6

int x

int y

16

Point2D p1 = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6);
p2 = p1;
p2.x = 400;
p2 = null;

p1.x == 400 is still true.
p2.x is undefined (null pointer exception).

400

85

int x

int y

p1

p2

5

6

int x

int y

null

17

23

85

i

k

Aliasing does not occur with primitive types.

int i = 23;
int k = 85;

The following code copies the int value.
There are no references (arrows) here.

k = i;
23

23

i

k

COMP 250

Lecture 7

Objects & Classes 2:
null, aliasing,

static, variable scope

Jan. 21, 2022

18

static modifier

19

When designing classes, certain fields and methods are naturally associated with objects
(instances), whereas other fields and methods are naturally associated with the class itself.

To define the latter, we use the static modifier.

For example, suppose some class generates many Point2D objects, and stores them at
various positions in an array.

Point2D arr = new Point2D[1000];

arr[23] = new Point2D(23, 85) ;
arr[732] = new Point2D(5, 6) ;
arr[63] = new Point2D(76, 15) ;

Suppose we want to keep track of how many objects there are.

class Point2D {
int x; // instance variable (or field)
int y; //

static int numberOfPoint2D; // static variable (class field)

Point2D(int x, int y){
this.x = x;
this.y = y;
numberOfPoint2D += 1 ; // increment

}
}

Any field variable (static or not) is initialized to a default value (0, for int), unless the
constructor initializes it.

We define a “class field” (or “class variable” or “static variable”) that counts the number
of objects of that class. Such a field/variable is declared with the static modifier.
It is associated with the class, rather than with any particular object.

20

class Point2D {
int x;
int y;

// …

public static void main(String[] args) {

// we will discuss what ‘public’ means next lecture
}

}

We can also define static methods (or “class methods”).

One common static method is main().

21

main() takes as input an optional sequence of String arguments. These arguments are stored in an array.
You would use this commonly if you were running Java programs from the command line.

static int getNumberOfPoint2D(){
return(numberOfPoint2D);

}

static double distanceBetween(Point2D p1, Point2D p2){

return(Math.sqrt(
(p1.x – p2.x) * (p1.x – p2.x)

+ (p1.y – p2.y) * (p1.y – p2.y)));
}

22

Here are two static methods that we might define for the Point2D class.

These methods is not associated with any particular Point2D object.

Math.sqrt() is a static method. We write the class name Math to specify that
the sqrt method is from that class.

Compare the Point2D.distanceBetween() method on the last slide with the
following instance (non static) method :

double distanceTo(Point2D p){

return(Math.sqrt(
(this.x – p.x) * (this.x – p.x)

+ (this.y – p.y) * (this.y – p.y)));
}

The above method would be called by (or “invoked by”) a particular Point2D object.
It would calculate the distance from this point to another Point2D object.

23

class Point2D {
int x; //
int y;

// put methods defined in previous slides here

public static void main(String[] args) {

Point2D p1 = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6) ;

System.out.println(distanceBetween(p1, p2));
System.out.println(p1.distanceTo(p2));

}
}

Here is an example that combines the above. The two methods compute the same value.

24

class Test {

public static void main(String[] args) {

Point2D p1 = new Point2D(23, 85);
Point2D p2 = new Point2D(5, 6) ;

System.out.println(Point2D.distanceBetween(p1, p2));
System.out.println(p1.distanceTo(p2));

}
}

In the example below, we call the methods from a different class Test.
This class’es main method must be written slightly differently: now we have to specify
the class Point2D that the static method belongs to.

This was unnecessary on the previous slide, because we were calling a method that
belonged to the Point2D class.

25

26

public class ExerciseToMiles {
final static double KM_TO_MILES = 0.6214;

public static double toMiles(double km){
return km * KM_TO_MILES;

}

public static void main(String[] args) {
System.out.println(toMiles(80.0));

}

}

public class Test {

public static void main(String[] args) {
System.out.println(ExerciseToMiles.toMiles(80.0));

}

}

COMP 250

Lecture 7

Objects & Classes 2:
null, aliasing,

static, variable scope

Jan. 21, 2022

27

Scope of a Variable (in Java)

Informal definition: the “scope” of a variable in a class is the part of the code
where the name of that variable is well defined.

Different kinds of variables have different scopes :
• instance fields/variables (non-static)
• class fields/variables (static)
• local variables inside a method
• loop variable
• method parameters

28

29

class Demo {
int k; // instance variable (field)

void myMethod (){

k = 3; // we can instead write this.k = 3;
}

static void myStaticMethod(){
k = 3; // compiler error

}
}

An instance variable (field) is visible from any non-static method within the class.
The field belongs to instances (objects) of the class.

30

class Demo {
static int k; // instance variable (field)

void myMethod (){

k = 3;
}

static void myStaticMethod(){
k = 3;

}
}
[UPDATED JAN. 28]
We can write the instruction in myMethod as this.k = 3 although we get a
warning. However, if we write the instruction in myStaticMethod that way, we get a
compiler error. Try it yourself!

We can write both of these instructions as Demo.k = 3;

A static variable (field) is visible from any method within the class.

31

class Demo {
int k; // instance variable (field)

void myMethod (){

int m1; // m1 scope starts

{
int m2; // m2 scope starts

} // m2 scope ends

} // m1 scope ends
}

A local variable is defined within a method body.
It’s scope is determined by curly brackets, and only below the variable definition.

32

class Demo {

void myMethod (){

for (int i = 0; i < 5; i++){
System.out.println(i);

} // scope i ends

i = 15; // compiler error
}

}

A loop variable is defined only with the loop itself.

33

class Demo {
int k;

void myMethod (int j){

System.out.println(j);

j = 3;

}
}

One can (re-)assign values to the parameter variable.
So it behaves like a local variable (next slide).

A method parameter is visible anywhere within the method.

34

class Demo {
int k; // instance variable (field)

void myMethod(){

int k = 5; // local variable

this.k = 27;

}
}

They are two completely different variables!
When the myMethod exits, the local variable k is no longer defined.
But the Demo object’s field (this.k) is still defined and keeps its value (27).

Examples where the same variable name is defined more than once.

35

class Demo {
int k; // instance variable (field)

void myMethod(int k){

int k = 5; // compiler error

k = 2;
}

}

The reason for the compiler error is that there would be an ambiguity.
The parameter k cannot have the same name as a local variable.

Examples where the same variable name is defined more than once.

36

A few more examples...

if time permits

(8-10 minutes)

otherwise finish it up next time

Scope of a Variable (in Java)

Informal definition: the “scope” of a variable in a class is the part of the code
where the name of that variable is well defined.

Different kinds of variables have different scopes :
• instance fields/variables (non-static)
• class fields/variables (static)
• local variables inside a method
• loop variable
• method parameters

37

38
Q: What gets printed ?

class TestMain {

static void myMethod(String s) {
s = "inside";

}

public static void main(String[] args) {

String s0 = “outside";
myMethod(s0);

System.out.println(s0);
}

}

“outside"s0

Tricky Example:

“inside"s

39

When we first enter myMethod and before we assign “inside” s, the method parameter
variable s takes the value that is passed to it, namely the argument s0 of the caller method.

class TestMain {

static void myMethod(String s) {
s = "inside";

};

public static void main(String[] args) {

String s0 = “outside";
myMethod(s0);

System.out.println(s0);
}

}

“outside"s0

Tricky Example:

s

40

s is then reassigned so that it references the string “inside“.

class TestMain {

static void myMethod(String s) {
s = "inside";

};

public static void main(String[] args) {

String s0 = “outside";
myMethod(s0);

System.out.println(s0);
}

}

“outside"s0

Tricky Example:

“inside"s

41

When the method exits and returns to main, s0 has its initial value. Indeed it never lost
that value.) So “outside” is printed.

class TestMain {

static void myMethod(String s) {
s = "inside";

};

public static void main(String[] args) {

String s0 = “outside";
myMethod(s0);

System.out.println(s0);
}

}

“outside"s0

Tricky Example:

Recall lecture 5: Passing an array to a method

42

static void demoPassArray (double[] doubleArr){

doubleArr[0] = 23.45;

}

Suppose you call this method in the code below:

double[] arr = {3.0, 5.2, 2.1, -7.78, 6.0};

demoPassArray(arr);

System.out.print(arr[0]);

Note the difference between this example and the previous one: here we
aren’t creating a new array.

arr

doubleArr

0
1
2
3
4

23.45
5.2
2.1
-7.78
6.0

Slight variation (tricky): Passing an array to a method

43

static void demoPassArray (double[] doubleArr){

doubleArr = new double[]{1.0, -5.2 };

// yes, that’s the syntax needed

}

Suppose you call this method in the code below:

double[] arr = {3.0, 5.2, 2.1, -7.78, 6.0};

demoPassArray(arr);

System.out.print(arr[0]);

What does it print ?

arr

doubleArr

Slight variation (tricky): Passing an array to a method

44

static void demoPassArray (double[] doubleArr){

doubleArr = new double[]{1.0, -5.2 };

// yes, that’s the syntax needed

}

Suppose you call this method in the code below:

double[] arr = {3.0, 5.2, 2.1, -7.78, 6.0};

demoPassArray(arr);

System.out.print(arr[0]);

arr

doubleArr

0
1
2
3
4

3.0
5.2
2.1
-7.78
6.0

When we first enter demoPassArray and before we construct the new array, the method
parameter variable doubleArr references the one existing array.

Slight variation (tricky): Passing an array to a method

45

static void demoPassArray (double[] doubleArr){

doubleArr = new double[]{1.0, -5.2 };

// yes, that’s the syntax needed

}

Suppose you call this method in the code below:

double[] arr = {3.0, 5.2, 2.1, -7.78, 6.0};

demoPassArray(arr);

System.out.print(arr[0]);

The parameter doubleArr behaves like a local variable. This local variable will reference a
new array.

arr

doubleArr

0
1
2
3
4

3.0
5.2
2.1
-7.78
6.0

1.0
5.2

Slight variation (tricky): Passing an array to a method

46

static void demoPassArray (double[] doubleArr){

doubleArr = new double[]{1.0, -5.2 };

// yes, that’s the syntax needed

}

Suppose you call this method in the code below:

double[] arr = {3.0, 5.2, 2.1, -7.78, 6.0};

demoPassArray(arr);

System.out.print(arr[0]); // print out 3.0

arr

doubleArr

0
1
2
3
4

3.0
5.2
2.1
-7.78
6.0

1.0
5.2

When the method exits and returns to main, arr hasn’t changed.

Coming up…

Lectures

Mon. Jan. 24
Visibility modifiers (private & public)

Wed. Jan. 26
ArrayLists

Fri. Jan. 28
Singly Linked Lists

Assessments

Fri. Jan. 28

Quiz 1 (lectures 1-7 i.e. today)

- I will post a practice quiz by Monday

Assignment 1 to be posted

- you will have 2 weeks to do it

47

