COMP 250

Lecture 6

Objects & Classes 1:

String, wrapper classes, Math,
defining our own classes, constructors
this

Jan. 19, 2022

Java comes with many built-in classes:

e String

 Wrapper classes such as:

Roolean

Byte
Character

Integer

e Math

We can also define our own classes.

R

Classes are “reference types”
rather than “primitive types”.

String Examples

We can make a string object in different ways, e.g.:

String s = '"Hello" ;

String sl = new String("Hello“) ; // allowed but unnecessary

This is similar to how there are different ways to make arrays.

String Examples

There are several methods associated with strings.

We call the methods using the dot notation as follows:
String s = "Hello " ;
int m = s.length(); Then m would have the value 5.

char ¢ = s.charAt (1) ; Then ¢ would have the value ‘e’ ;

String s = VYHello” ;

int m;

char «c;

m = s.indexOf (‘'0o’) ; m is 4.

m = s.indexOf (‘p’); m is -1 (indicating ‘not found’)
c = s.charAt(8); Produces a runtime error

StringIndexOutOfBoundsException

String concatenation

String s0 = “Hello” ;

\

String sl = there” ;

The following expressions (and more) each produce the string “Hello there”.
“Hello” + ™ there”
sO + sl
s0.concat (s1l)

“Hello” .concat (%Y there”)

Compare Strings using equals ()

String s0 = “Hello” ;
String sl = YHello” ;
boolean b = s0.equals(sl); // true

The equals () method goes through each character of the two strings and
verifies that they are the same.

“”

A common mistake made by Java programmers to compare strings using the “==
operator instead of equals (). See next slide(s).

ASIDE: why not compare Strings using == operator ?

o

As we will see, when the “==
the same.

operator compares objects, it checks if two objects are

So, you might expect the following expressions to evaluate to false i.e. the left and
right side are different (but equal) strings.

"surprise" == "surprise” // evaluatesto true

"sur" + "prise" == "surprise" // evaluatesto true

The reason the first result is true is that the Java compiler creates a list of constants that
the program will need, and it only makes one copy of each constant.

For the second example, the compiler does the concatenation "sur" + "prise"in
advance, so again there is just one string "surprise".

ASIDE: why not compare Strings using == operator ?

Consider a different example in which a string is computed at run time.

String s = "sur";
s + "prise" == "surprise" evaluatesto false

The reason is that there are two String objects created at runtime.

(s + "prise").equals ("surprise") evaluatesto true which is what we want.

Bottom line: it is always safer to use equals when comparing strings.

String name = “Suzanne Fortier” ;
name = name.toUpperCase () ;

The second line assigns name the string “SUZANNE FORTIER”

A common mistake is to write just
name.toUpperCase ()

and assume that this changes the string that name references. It doesn’t.
Rather, a new (upper case) string is created and returned. You need to write that
returned string somewhere.

Strings are “immutable”

String objects cannot be changed.

String s = "cats";

s.charAt (0) = 'r'; // compile-time error!

You cannot use the charAt method in this way.

There is no String method that allows us to set the value of a particular character.
Rather, one would have to make a new string.

(There are various St ring methods that can help you do that. Details omitted here.)

Primitive types Reference types (so far...)

boolean b false char[] charArray
0 L
h
char c N 1 -
2 N
3 C
int 1 -2498 4 H

double x 34.679

String s » “LUNCH"”

Let’s look at more examples of reference types.

Wrapper classes

Primitive Type Wrapper Class
byte Byte

short Short

int Integer
long Long

float Float
double Double
boolean Boolean
char Character

How do we use these?

One way we use wrapper classes is to define constants:
Byte.MAX VALUE hasvalue2’ —1

Short.MAX VALUE hasvalue 2®® —1
Integer.MAX VALUE hasvalue 23t —1
Long.MAX VALUE hasvalue 2% —1

Float.MAX VALUE and Double.MAX VALUE have the largest (finite) values
that you can represent witha f1oat ordouble, respectively.

Use MIN VALUE instead of MAX VALUE to get the smallest negative values.

Another way we use wrapper classes is to convert from a String to a number:
To convert froma String toan int, use:

int 1 = Integer.parseInt("54");

\
To convert from a Stringto an Integer, use: The names of these methods

/ don’t clarify at all what is the
difference between them!

| can’t think of better name for
them. Calling them
“convertToPrimitivelnt()” and
“convertToWrapperinteger()”
would have been awkward :/.

Integer j = Integer.valueOf ("54");

To convert froma Stringtoa double, use:
double z = Double.parseDouble(“"2.7");
To convert froma Stringtoa Double, use:

Double y = Double.valueOf (“2.7");

15

Initializing a wrapper class variable

Boolean Db = rewv—hBooteantEruesd Boolean.valueOf (true) ;
Integer 1 = -rfrew—Irrteger{—45—) Integer.valueOf (-45) ;
Double X = =-mew Dbouvbte{t——=—F>—3+ Double.valueOf(3.75);

The wrapper classes constructors were “deprecated” as of Java 8.

16

Autoboxing and Unboxing (“wrapper”)

Alternatively, we can write: b

| € l X

Roolean b = true;
Integer 1 = -45; _45
Double x = 3.75;

The compiler replaces this code with what | wrote on the previous slide.
This is called autoboxing. (It is reminiscent of casting but it is not the same thing.)

Going in the opposite direction is called unboxing.

boolean bl
integer 11 = 1i;
double x1l = x; bl | true il | -45

|
- O

Check out fields & methods for wrapper classes at the Java APl e.g. Integer

& C (ﬁ docs.oracle.com/javase/8/docs/api/java/lang/Integer.html e &8 Q i‘() b

Method Summary

7 Static Methods Instance Methods Concrete Methods

Modifier and Type Method and Description

static int bitCount(int i)

Returns the number of one-bits in the two's complement binary representation of the specified int value.

byte byteValue()
Returns the value of this Integer as a byte after a narrowing primitive conversion.

static int compare(int x, int y)
Compares two int values numerically.

int compareTo(Integer anotherInteger)
Compares two Integer objects numerically.

static int compareUnsigned(int x, int y)
Compares two int values numerically treating the values as unsigned.

static Integer decode(String nm)
Decodes a String into an Integer.

static int divideUnsigned(int dividend, int divisor)

Returns the unsigned quotient of dividing the first argument by the second where each argument and the result is interpreted as an unsigned value.

double doubleValue()

Returns the value of this Integer as a double after a widening primitive conversion.

boolean equals(Object obj)

Compares this object to the specified object.

float floatValue()

Returns the value of this Integer as a float after a widening primitive conversion.

18

Big Picture Brief Summary

Primitive types Reference types
char c 37 String s int[] intArray
v
0 32
int i -4598 ! 1 —°
3.75 2 4335
3 234
double x 3.75 4 -12
Double x Integer 1
v
3.75 -4598

...and other wrapper class examples

Reference variables and objects

intArray I
The arrows are references to
“objects”. 0
1
s 2
The value of a reference l 3
variable can be thought of as 4

the address of an object in
memory. That’s what we mean
by the arrow.

X I

...and other wrapper
class examples

COMP 250

Lecture 6

Objects & Classes 1:

Math,
defining our own classes, constructors
this

Jan. 19, 2022

Math

e Math.PI isthevaluenw & thisis a field, not a method

Suppose that we declare a variable double x;

Math.sqgrt (x) returnsthe value /x.

Math.random() returnsarandom numberin (0,1).

Math.log (x) returnsthevalue log,x or In(x).

Math.loglO (x) returnsthe valuelog;g x .

Math.sin (x) returnsthe value sin(x).

22

As we saw in lecture 4, Java has many pre-defined reference types, or “classes”.
They are organized into packages.

Examples of packages from the “standard Java library”:

Java.awt
Java.util
Java.lang

23

Defining your own class

class ClassName {
// field declarations
// method declarations

to be discussed next week

Exan1pET///////////////////////////

public class HelloWorld {

public static void main (String[] args) {
System.out.println("Hello, World!");

Java haming conventions

Class names begin with an upper case letter (String, Integer, Math, ..).

Constants should be all upper case, e.g. Math.PI

Variables, methods, package names (and some other things) begin with a lower case
character.

e.g. Integer j = Integer.valueOf ("54");

25

Constructors

class ClassName {

// field declarations FEB 12: MENTION THEY ARE
INITIALIZED.

// method declarations

ClassName(){ // constructor methods have no return type
// their method name is same as class name

// instructions 1n constructor method

No-argument Constructor

class Point2D {
int X;
int Vs

Point2D () { };

// methods for operating on a point e.g moving it

}

A constructor with no arguments is called a “no-argument constructor”.
It could have an empty body, or it could have instructions in the body such a print
statement, or it might assign default values to the fields, e.g. x = 5; ..

Default Constructor

class Point2D {

int X,
int Vs
// The compiler would essentially create this method.

If you don’t explicitly define any constructor for your class, then the compiler
makes a “default constructor” for you, namely a no-argument constructor.

The no-argument and default constructors both initialize the fields to a default
value of 0, 0.0, ‘\u0000’, false, ornull depending on the type.

28

new keyword

To create (construct) an object, use the new keyword and a constructor method
which has the name of the object’s class

Some method might have the following instruction:

Point2D pl = new Point2D();

object of class Point2D
reference variable

of type Point2D

int x 0

pl —

int y 0

The method can then change the values in the object’s x and vy fields:

pl.x = 23;
pl.y = 85;

int x

int y

23

85

30

Constructors with arguments

We can define constructors that have arguments, for example, that assign values to
the fields of the object.

class Point2D {
int X;
int Vs

Point2D(int x0, int vyO0) {
x = x0;
y = y0;

} int x 23

int vy 85

We can call this constructor as follows:

Point2D pl = new Point2D (23, 85);

Non-default constructors & “overloading”

class Point2D {

int X,
int Vs
Point2D () { }; // “no argument” constructor

Point2D(int x0, int yO0}{
x = x0;
y = y0;

If we define a (non-default) constructor that has some parameter(s), and if we also want
to have a no-argument constructor, then we must explicitly define the no-argument
constructor. Otherwise, the no-argument constructor won’t exist.

class Point2D {
int X;
int Vs

Point2D(int x0, int yO0}{
x = x0;
y = v0;

void moveTo(int x0, int yO0) {
x = x0;
y = yO0;

— other method declarations
void moveBy(int deltaX, int deltaY) {

X = X + deltaX;
y = y + deltay;

class Point2D {
int X;
int Ve

Point2D (int x, int vy}{
this.x = x;
this.y = vy;

void moveTo(int x, 1int
X = X3
S 2

void moveBy(int deltaX,
.Xx += deltaX;
.y += deltay;

keyword this

this referstothe Point2D
object being constructed.

v) {

int deltayY) {

‘this’ allows
having variable
names that are the
same as the field
name, making the
code easier to read.

34

Example

public class AnotherClass {
public static void main (String[] args) {
Point2D pl = new Point2D (3, 4};

pl.moveTo(7, 7);

Point2D P2 = new Point2D (8, 2};
p2.moveBy(2, 0);

pl p2

N I int x 7 int x

int y 7 int y

Coming up...

Lectures

Homework (TODO)

Fri.

Jan. 21 objects & classes 2

aliasing, static, scope, ...

Basic Java coding exercises ' octure sides & notes
(with solutions) [I]
Exercises
E1-base convers ion-
log
Exerujses PCI;IE[:
e

Assignment 1 to be posted Fri. Jan. 28 (2 weeks).

36

