
COMP 250

Lecture 6

Objects & Classes 1:
.

String,wrapper classes, Math,

defining our own classes, constructors
this

Jan. 19, 2022
1

2

Java comes with many built-in classes:

• String

• Wrapper classes such as:
• Boolean
• Byte
• Character
• Integer
• ….

• Math

We can also define our own classes.

Classes are “reference types”
rather than “primitive types”.

(Other reference types include
arrays – see last lecture.)

String Examples

We can make a string object in different ways, e.g.:

String s = "Hello " ;

String s1 = new String("Hello “) ; // allowed but unnecessary

This is similar to how there are different ways to make arrays.

3

String Examples

There are several methods associated with strings.
We call the methods using the dot notation as follows:

String s = "Hello " ;

int m = s.length(); Then m would have the value 5.

char c = s.charAt(1); Then c would have the value ‘e’;

4

5

String s = “Hello” ;

int m;

char c;

m = s.indexOf(‘o’); m is 4.

m = s.indexOf(‘p’); m is -1 (indicating ‘not found’)

c = s.charAt(8); Produces a runtime error
StringIndexOutOfBoundsException

String concatenation

6

String s0 = “Hello” ;
String s1 = “ there” ;

The following expressions (and more) each produce the string “Hello there”.

“Hello” + “ there”

s0 + s1

s0.concat(s1)

“Hello”.concat(“ there”)

Compare Strings using equals()

String s0 = “Hello” ;

String s1 = “Hello” ;

boolean b = s0.equals(s1); // true

The equals() method goes through each character of the two strings and
verifies that they are the same.

A common mistake made by Java programmers to compare strings using the “==“
operator instead of equals(). See next slide(s).

7

As we will see, when the “==“ operator compares objects, it checks if two objects are
the same.

So, you might expect the following expressions to evaluate to false i.e. the left and
right side are different (but equal) strings.

"surprise" == "surprise” // evaluates to true

"sur" + "prise" == "surprise" // evaluates to true

The reason the first result is true is that the Java compiler creates a list of constants that
the program will need, and it only makes one copy of each constant.
For the second example, the compiler does the concatenation "sur" + "prise" in
advance, so again there is just one string "surprise".

ASIDE: why not compare Strings using == operator ?

8

Consider a different example in which a string is computed at run time.

String s = "sur";

s + "prise" == "surprise" evaluates to false

The reason is that there are two String objects created at runtime.

(s + "prise").equals("surprise") evaluates to true which is what we want.

Bottom line: it is always safer to use equals when comparing strings.

ASIDE: why not compare Strings using == operator ?

9

10

String name = “Suzanne Fortier” ;
name = name.toUpperCase();

The second line assigns name the string “SUZANNE FORTIER”

A common mistake is to write just

name.toUpperCase()

and assume that this changes the string that name references. It doesn’t.
Rather, a new (upper case) string is created and returned. You need to write that
returned string somewhere.

Strings are “immutable”

String objects cannot be changed.

String s = "cats";

s.charAt(0) = 'r'; // compile-time error!

You cannot use the charAt method in this way.

There is no String method that allows us to set the value of a particular character.
Rather, one would have to make a new string.
(There are various String methods that can help you do that. Details omitted here.)

11

12

0
1
2
3
4

L
U
N
C
H

char[] charArrayfalse

N

-2498

34.679

boolean b

char c

int i

double x

String s “LUNCH”

Primitive types Reference types (so far...)

Let’s look at more examples of reference types.

Wrapper classes

13

Primitive Type Wrapper Class
byte Byte

short Short

int Integer

long Long

float Float

double Double

boolean Boolean

char Character

How do we use these?

14

One way we use wrapper classes is to define constants:

Byte.MAX_VALUE has value ଻

Short.MAX_VALUE has value ଵହ

Integer.MAX_VALUE has value ଷଵ

Long.MAX_VALUE has value ଺ଷ

Float.MAX_VALUE and Double.MAX_VALUE have the largest (finite) values
that you can represent with a float or double, respectively.

Use MIN_VALUE instead of MAX_VALUE to get the smallest negative values.

Another way we use wrapper classes is to convert from a String to a number:

To convert from a String to an int, use:

int i = Integer.parseInt("54");

To convert from a String to an Integer, use:

Integer j = Integer.valueOf("54");

To convert from a String to a double, use:

double z = Double.parseDouble(“2.7");

To convert from a String to a Double, use:

Double y = Double.valueOf(“2.7");

The names of these methods
don’t clarify at all what is the
difference between them!

I can’t think of better name for
them. Calling them
“convertToPrimitiveInt()” and
“convertToWrapperInteger()”
would have been awkward :/.

15

Initializing a wrapper class variable

16

b

true

x

3.75

i

-45

Boolean b = new Boolean(true) Boolean.valueOf(true);
Integer i = new Integer(-45) Integer.valueOf(-45);
Double x = new Double(3.75); Double.valueOf(3.75);

The wrapper classes constructors were “deprecated” as of Java 8.

Autoboxing and Unboxing (“wrapper”)

17

b

true

x

3.75

i

-45

Boolean b = true;
Integer i = -45;
Double x = 3.75;

Alternatively, we can write:

The compiler replaces this code with what I wrote on the previous slide.
This is called autoboxing. (It is reminiscent of casting but it is not the same thing.)

Going in the opposite direction is called unboxing.

boolean b1 = b;
integer i1 = i;
double x1 = x; b1 true x1 3.75i1 -45

18

Check out fields & methods for wrapper classes at the Java API e.g. Integer

Big Picture Brief Summary

19

0
1
2
3
4

32
-5
4335
234
-12

int[] intArray‘3’

-4598

3.75

char c

int i

double x

String s

“3.75”

Primitive types Reference types

Double x

3.75

Integer i

-4598

...and other wrapper class examples

Reference variables and objects

20

0
1
2
3
4

32
-5
4335
234
-12

intArray

s

“3.75”

x

3.75

i

-4598

The arrows are references to
“objects”.

The value of a reference
variable can be thought of as
the address of an object in
memory. That’s what we mean
by the arrow. (More generally,
it is some id or number that
uniquely identifies the object.)

...and other wrapper
class examples

COMP 250

Lecture 6

Objects & Classes 1:
.

String,wrapper classes, Math,

defining our own classes, constructors
this

Jan. 19, 2022
21

Math

• Math.PI is the value 𝜋  this is a field, not a method

Suppose that we declare a variable double x;

• Math.sqrt(x) returns the value 𝑥 .

• Math.random() returns a random number in (0,1).

• Math.log(x) returns the value 𝑙𝑜𝑔௘𝑥 or 𝑙𝑛 (𝑥).

• Math.log10(x) returns the value 𝑙𝑜𝑔ଵ଴ 𝑥. (There is no method for taking log to a
given base b.)

• Math.sin(x) returns the value 𝑠𝑖𝑛 (𝑥).
22

23

As we saw in lecture 4, Java has many pre-defined reference types, or “classes”.

They are organized into packages.

Examples of packages from the “standard Java library”:

java.awt
java.util
java.lang

Defining your own class

24

class ClassName {

// field declarations

// method declarations
}

Example:

public class HelloWorld {

public static void main (String[] args) {
System.out.println("Hello, World!");

}
}

to be discussed next week

Java naming conventions

Class names begin with an upper case letter (String, Integer, Math, …) .

Constants should be all upper case, e.g. Math.PI

Variables, methods, package names (and some other things) begin with a lower case
character.

e.g. Integer j = Integer.valueOf("54");

25

Constructors

26

class ClassName {

// field declarations FEB 12: MENTION THEY ARE
INITIALIZED.

// method declarations

ClassName(){ // constructor methods have no return type
// their method name is same as class name

// instructions in constructor method
}

}

No-argument Constructor

27

class Point2D {
int x;
int y;

Point2D(){ };

// methods for operating on a point e.g moving it

}

A constructor with no arguments is called a “no-argument constructor”.
It could have an empty body, or it could have instructions in the body such a print
statement, or it might assign default values to the fields, e.g. x = 5; ...

Default Constructor

28

class Point2D {
int x;
int y;

// Point2D(){ }; The compiler would essentially create this method.
}

If you don’t explicitly define any constructor for your class, then the compiler
makes a “default constructor” for you, namely a no-argument constructor.

The no-argument and default constructors both initialize the fields to a default
value of 0, 0.0, ‘\u0000’, false, or null depending on the type.

new keyword

29

Point2D p1 = new Point2D();

p1

0

0

int x

int y

To create (construct) an object, use the new keyword and a constructor method
which has the name of the object’s class (except for wrapper classes – see earlier).

Some method might have the following instruction:

reference variable
of type Point2D

object of class Point2D

30

0

0

int x

int y

Point2D p1 = new Point2D();

p1

p1.x = 23;
p1.y = 85;

The method can then change the values in the object’s x and y fields :

23

85

int x

int y

p1

Constructors with arguments

31

class Point2D {
int x;
int y;

Point2D(int x0, int y0){
x = x0;
y = y0;

}
}

We can call this constructor as follows:

We can define constructors that have arguments, for example, that assign values to
the fields of the object.

23

85

int x

int y

Point2D p1 = new Point2D(23, 85);

p1

Non-default constructors & “overloading”

32

class Point2D {
int x;
int y;

Point2D(){ }; // “no argument” constructor

Point2D(int x0, int y0}{
x = x0;
y = y0;

}
}

If we define a (non-default) constructor that has some parameter(s), and if we also want
to have a no-argument constructor, then we must explicitly define the no-argument
constructor. Otherwise, the no-argument constructor won’t exist.

33

class Point2D {
int x;
int y;

Point2D(int x0, int y0}{
x = x0;
y = y0;

}

void moveTo(int x0, int y0){
x = x0;
y = y0;

}

void moveBy(int deltaX, int deltaY){
x = x + deltaX;
y = y + deltaY;

}
}

other method declarations

keyword this

34

class Point2D {
int x;
int y;

Point2D(int x, int y}{
this.x = x;
this.y = y;

}

void moveTo(int x, int y){
this.x = x;
this.y = y;

}

void moveBy(int deltaX, int deltaY){
this.x += deltaX;
this.y += deltaY;

}
}

‘this’ allows
having variable
names that are the
same as the field
name, making the
code easier to read.

this refers to the Point2D
object being constructed.

this refers to the Point2D
object that is calling
(“invoking”) the method.

Example

35

public class AnotherClass {

public static void main (String[] args) {

Point2D p1 = new Point2D(3, 4};
p1.moveTo(7, 7);

Point2D p2 = new Point2D(8, 2};
p2.moveBy(2, 0);

}
}

7

7

int x

int y

p2

10

2

int x

int y

p1

Coming up…

Lectures

Fri. Jan. 21 objects & classes 2

aliasing, static, scope, ...

Homework (TODO)

Basic Java coding exercises
(with solutions)

Assignment 1 to be posted Fri. Jan. 28 (2 weeks).

36

