
COMP 250

Lecture 5

arrays in Java

Jan. 17, 2022

1

Motivation for arrays

Often we have many data items that are all of some given type. These could be
numbers, strings, …

We don’t want to define a separate variable for each data item.

int1, int2, int3, …., int500

Rather we want a single data structure where we can access these data items using
a number index.

2

Example: an array of integers

3

0
1
2
3
4
5
6
7
8

-7
1

-25
3

-15
302

67
13

290

This is an array of integers of length 9.

Just like with primitive types, we can declare array variable without initializing it.
Here we do not specify the size of the array that it will reference.

Let’s work with the example of double rather than int.

int[] arr1 ;
double[] arr2 ;
double arr3[] ;

We might not know in advance how big the array needs to be.

Declaring an array variable

4

Both notations
are allowed.

Constructing a new array

5

0
1
2
3
4
5
6
7
8

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

In Java, we construct a new array as follows.

double[] arr = new double[9];

The new keyword is required.

The values are initialized to 0.0 .

Reference variable

6

0
1
2
3
4
5
6
7
8

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

double[] arr = new double[9];

The variable arr is not the same thing as the
underlying array.

Rather, the variable arr “references” the array. It
says where to find the array. Think of it as holding the
address of the array in memory.

arr

Example

7

0
1
2
3
4
5
6
7
8

0.0
2.5
0.0

-73.21
0.0
0.0

-73.21
0.0
0.0

double[] arr = new double[9];

arr[1] = 2.5;
arr[3] = -73.21;
arr[6] = arr[3];

.

arr

long[] longArr = new long[12];

longArr[3] = 4000000000000000000l;;

8

0
1
2
3
:

11

0
0
0

4000000000000000000l
:

0
0
0

longArr

To define a literal that is larger than the largest int,
we have to append an l. This is similar to how we
needed to append an f when we want to define a
float literal rather than double.

char[] ch = new char[12];

ch[10] = ‘a’;

9

0
1
2
3
:

11

‘\u0000’
‘\u0000’
‘\u0000’
‘\u0000’

:

‘a’
‘\u0000’

ch

Initialized to
Unicode value 0.

boolean[] b = new boolean[12];

b[2] = true;

10

0
1
2
3
:

11

false
false
true
false

:

false
false

b

Initialized to false

Array Initialization (hard coded)

11

int[] arr = {3, 7, -5, 2, 19};

0
1
2
3
4

3
7

-5
2
19

arr

Array Initialization (hard coded)

12

char[] ch = { ‘L’, ‘U’, ‘N’, ‘C’, ‘H’};

0
1
2
3
4

L
U
N
C
H

ch

Array length

13

0
1
2
3
4
5
6
7
8

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

for (int i=0; i < arr.length; i++){
arr[i] = 2.0 * i;

}

This dot notation will come up often.

arr

Java “enhanced for loop”

14

0
1
2
3
4
5
6
7
8

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

for (double d : arr){
System.out.println(d);

}

arr

This loop would print out the values that are stored in the
array. It implicitly indexes the elements of the array, but
you don’t have access to the indices.

Shifting elements in an array

15

for (int j=1; j < arr.length; j++){
arr[j-1] = arr[j];

}

0
1
2
3
4
5
6

2.0
4.0
6.0
8.0

10.0
12.0
14.0

BEFORE AFTER ?

Does this shift backwards or forwards?

What are the “edge cases” ?

Shifting elements in an array

16

0
1
2
3
4
5
6

2.0
4.0
6.0
8.0

10.0
12.0
14.0

BEFORE AFTER

0
1
2
3
4
5
6

4.0
6.0
8.0

10.0
12.0
14.0
14.0

BTW, notice that I am
not drawing the arr
variable in this
sequence of slides.
This is just to remove
the clutter.

for (int j=1; j < arr.length; j++){
arr[j-1] = arr[j];

}

How to shift forwards ?

17

for (int j=1; j < arr.length; j++){
arr[j] = arr[j-1];

}

0
1
2
3
4
5
6

2.0
4.0
6.0
8.0

10.0
12.0
14.0

BEFORE AFTER ?

How to shift forwards ?

18

0
1
2
3
4
5
6

2.0
4.0
6.0
8.0

10.0
12.0
14.0

BEFORE AFTER (oopsie!)

0
1
2
3
4
5
6

2.0
2.0
2.0
2.0
2.0
2.0
2.0

Suggestions?

for (int j=1; j < arr.length; j++){
arr[j] = arr[j-1];

}

How to shift forwards ?

19

for (int j = arr.length-1; j > 0; j--){
arr[j] = arr[j-1];

}

0
1
2
3
4
5
6

2.0
4.0
6.0
8.0

10.0
12.0
14.0

BEFORE AFTER

0
1
2
3
4
5
6

2.0
2.0
4.0
6.0
8.0
10.0
12.0

“Circular shift” (forward)

20

How can we shift forward, and move the last element to the beginning?

0
1
2
3
4
5
6

2.0
4.0
6.0
8.0

10.0
12.0
14.0

BEFORE AFTER

0
1
2
3
4
5
6

14.0
2.0
4.0
6.0
8.0
10.0
12.0

“Circular shift” (forward)

21

int tmp = arr[arr.length-1];
for (int j = arr.length-1; j > 0; j--){

arr[j] = arr[j-1];
}
arr[0] = tmp;

0
1
2
3
4
5
6

2.0
4.0
6.0
8.0

10.0
12.0
14.0

BEFORE AFTER

0
1
2
3
4
5
6

14.0
2.0
4.0
6.0
8.0
10.0
12.0

tmp

14.0

arr

Duplicating an array

22

int[] arr1 = {3, 5, 2, -7, 6};
int[] arr2 = new int[arr1.length];

arr2 = arr1; // What would this do ?

BEFORE

0
1
2
3
4

3
5
2
-7
6

arr1 arr2

0
1
2
3
4

0
0
0
0
0

Duplicating an array

23

int[] arr1 = {3, 5, 2, -7, 6};
int[] arr2 = new int[arr1.length];

arr2 = arr1; // oopsie!!!

AFTER

0
1
2
3
4

3
5
2
-7
6

0
1
2
3
4

0
0
0
0
0

Now, nothing references
this array. It becomes
“garbage”.

arr1 arr2

Duplicating an array

24

int[] arr1 = {3, 5, 2, -7, 6};
int[] arr2 = new int[arr1.length];
for (int m=0; m < arr1.length; m++){

arr2[m] = arr1[m];
}

0
1
2
3
4

3
5
2
-7
6

arr1 arr2

0
1
2
3
4

3
5
2
-7
6

AFTER

Passing an array to a method

25

static void demoPassArray (double[] doubleArray){

doubleArray[0] = 23.45;

}

Suppose you call this method in the code below e.g. in main method:

double[] arr = {3.0, 5.2, 2.1, -7.78, 6.0};

demoPassArray(arr);

System.out.print(arr[0]); Q: What is printed ?

Explained in a
few lectures

Passing an array to a method

26

static void demoPassArray (double[] doubleArray){

doubleArray[0] = 23.45;

}

Suppose you call this method in the code below e.g. in main method:

double[] arr = {3.0, 5.2, 2.1, -7.78, 6.0};

demoPassArray(arr);

System.out.print(arr[0]); A: 23.45

Passing a primitive type to a method

27

static void demoPassDouble (double x){
x = 175.0;

}

Suppose you call this method in the code below e.g. in main method:

double y = 2.0;
demoPassDouble(y)
System.out.print(y); Q: What is printed ?

Passing a primitive type to a method

28

static void demoPassDouble (double x){
x = 175.0;

}

Suppose you call this method in the code below e.g. in main method

double y = 2.0;
demoPassDouble(y)
System.out.print(y); A: 2.0

Note the behavior is very different here!

Java methods: pass by ‘value’

In Java, the value of a parameter is passed to the method.

In the case of the array, the value is a reference to an array.
You can think of this value as a location in memory.

In the case of a primitive type, the value is the
number/character/Boolean stored in memory rather than
the location in memory.

29

0
1
2
3
4
5
6

14
2
4
6
8
10
12

int[] arr

double y 2.0

Method for duplicating an array

The following method makes a copy of an array and returns a reference to this copy.

int[] copyArray(int[] arr){

int[] newArray = new int[arr.length];

for (int i=0; i < arr.length; i++){

newArray[i] = arr[i];

}

return newArray;

}

30

Two Dimensional (2D) Arrays

31

0 0 0 0 0
0 0 0 0 0
0 0 0 0 345
0 0 0 0 0

int[][] matrix1 = new int[4][5];

matrix1[2][4] = 345;

Two Dimensional (2D) Arrays

32

5 7 23 3 65
23 -45 56 0 16

234 3 -564 3 345
6 30 46 23 23

int[][] matrix2 = { {5, 7, 23, 3, 65},
{23, -45, 56, 0, 16},
{234, 3, -564, 3, 345},
{6, 30, 46, 23, 23} };

More general 2D Array: a 1D Array of 1D Arrays
(a.k.a. “Jagged” or “Ragged” Arrays)

33

int[][] ragged = { {5, 7, 23},
{23, -45, 56, 0, 16},
{234},
{6, 30} };

5 7 23

23 -45 56 0 16

234

6 30

ragged[0]

ragged[1]

ragged[2]

ragged[3]

ragged Q: How would you
index this item ?

More general 2D Array: a 1D Array of 1D Arrays
(a.k.a. “Jagged” or “Ragged” Arrays)

34

int[][] ragged = { {5, 7, 23},
{23, -45, 56, 0, 16},
{234},
{6, 30} };

5 7 23

23 -45 56 0 16

234

6 30

ragged[0]

ragged[1]

ragged[2]

ragged[3]

ragged

ragged[1][4]

N-Dimensional Arrays

35

For example, a video is a sequence of image frames.
It is an N-dimensional array.

Q: What is N here ?

N-Dimensional Arrays

36
three color channels (RGB, or red, green, blue)

For example, a video is a sequence of image frames.
It is an N-dimensional array.

Q: What is N here ?

A: 4 (2 for pixel image position, 1 for color, 1 for time)

int[Nrows][Ncols][3][Nframes] video;

Array access time

37

0
1
2
3
4
5
6

14
2
4
6
8
10
12

int[] arrThe array itself is a sequence of consecutive
locations (slots) in memory. Each slot
requires the same number of bytes, depending
on whether the array is a primitive type
(byte, int, double,..) or a reference
type (next lecture).

Arrays have “constant time” access

The time it takes the computer to read from or write to an element in an array is
constant, i.e. independent of the length N of the array.

x = a[k]; // read

a[k] = x ; // write

ASIDE: What happens at the level of machine code ?
The location or address of a[k] is computed as follows,
where address(a) is the address of the first slot of the array:

address(a) + k * number_of_bytes_per_array_slot 38

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]

14
2
4
6
8
10
12

a

Coming up…

Lectures

Wed. Jan. 19 objects & classes 1:

(wrapper classes, strings)

Fri. Jan. 21 objects & classes 2

Homework (TODO)

Basic Java coding exercises
(with solutions)

Assignment 1 to be posted Fri. Jan. 28 (2 weeks).

39

