COMP 250

Lecture 4

Java Programming Overview
Compiler, JRE, JDK, IDE
Debugging
Java documentation (API)
Packages

Fri. Jan. 14, 2022

TODO (Done?):

By today, you should have
covered all the basics.

| am not expecting you to have
mastered these topics by now.
That will come with practice...

learn basic Java syntax

https://www.w3schools.com/java/default.asp

Css JAVASCRIPT SQL PYTHON PHP BOOTSTRAP HOW TO W3.CSS JAVA

Java Tutorial

Java HOME

Java Intro

Java Get Started
Java Syntax

Java Comments
Java Variables
Java Data Types
Java Type Casting
Java Operators
Java Strings

Java Math

Java Booleans
Java If..Else

Java Switch

Java While Loop
Java For Loop
Java Break/Continue

Java Arrays

Java is a programming language.

Java is used to develop mobile apps, web apps, desktop apps, games and much more.

Start learning Java now »

Yesterday’s Tutorial

Fs
Tutorials & other Zoom Weeks 1&2 (SaSha)
Activities
This folder contains various materials put together by T.A. Sasha to get you started with
* weeks 1 &2 (Sasha) coding in Java. ltincludes:
¢ Installation Guide for JDK and IDE videos
. = For Windows https://youtu.be/Xé6b5-RjbXKE
:;t;rr'j:nlg s For Mac https://youtu.be/Xéb5-RibXKE
» Sasha's tutorial from Thursday Jan. 13 (zoom recording) in which he covered:
= |DE + Tech Setup
Written = Expectations for assignments, quizzes, exam
Instructions and L = How to download and start assignments with Ed / MyCourses / Intelli)

= How run tests in vour IDE

Brief History of Java

 Java (1995) shares similar syntax to C (1970’s) and C++ (1980’s).

* Like C++, Javais object oriented. ASIDE: Java is easier to use than C++ :

* Java was used in early web browsers to run “Java applets”.

* Java was written James Gosling (“Dr Java”) at Sun Microsystems.
Sun was acquired by Oracle (2010). Oracle now maintains/improves Java.

Java Programs

A Java program (“application”) is a Java class that has a main method.

| am not expecting you to understand the code below yet. We will starting talking
about classes next week.

public class {

public static void (Stringl[] args) {
System.out.println("Hello, World!"™);

Levels of Programming Languages

* High Level (e.g. C, C++, Java, Python,... and hundreds more)
* Assembly language (human readable version of machine code)
* Machine code (binary code that controls the circuits of a computer)

In COMP 273 and ECSE 324, you will learn MIPS assembly language and machine code.

ASIDE Example: MIPS Assembly Language

The code below is part of a MIPS assembly language program in COMP 273. Each of the instructions is
encoded in 32 bits which provide data and control information for a MIPS CPU (hardware).

addi $sp,$sp,-8 # else , make space for 2 items on the stack
sw Sra, 4($sp) # store return address on stack
sw $a0, 0($sp) # store argument n on stack

(will need it to calculate returned value)
addi $a0, $al0, -1 # compute argument for next call: n = n-1
jal sumton # jump and link to sumton (recursive)
lw Sra, 4($sp) # load the return address
1w $a0, 0($sp) # load n from the stack
addi $sp, $sp, 8 # change the stack pointer
add $v0, $a0, S$vO # add current argument n to $v0

jr $ra # return to parent

Compiler

A compiler is a program that translates a higher level language into a
lower level language.

(N
program in program in
high level compiler low level
language language
_ J

Running a C Program (or Fortran, ...

C programs
(.c files)

r

B G

C compiler

~\

J

machine code
(executable
file)

physical

computer

The physical computer
only understands the
machine code.

>

output of
the
program

Java Compiler (source =2 byte code)

A Java compiler is a program that translates a Java source file into a
Java class file. The latter is byte code.

Java byte code file
Example.class

Java source file:
Example.java

class Example{

.}

Java
compiler

. J

Source Code Byte Code ASIDE: this slide is for
your interest only !

file Example.java Example.CIaSS What I’'m Showing here is like
assembly language which
class Example { 0: iconst_0 you'll learn in COMP 273.
1:istore 1 Itis a human readable
public static int sumToN(int n){ 2:iconst_0 version of Java byte code.
int sum = O- 3 istore 2 The actual byte code is a
. ! " - sequence of coded bytes.
for (int k=0; k < n; k++){ 4:iload 2
sum = sum + k; 5: ilo?d—o The numbers on left are byte
} 6: if_icmpge 19 indices where instruction
return sum; 9:iload_1 starts (like a line number).
} 10: iload_2
} 11: iadd iconst_n, istore_n, iload_n
12:istore 1 are standard instructions that
13- iinc 2_1 each have own code word.
16: goto 21 (Each code word is a byte.)
19: ?Ioad_l See here for the Java byte
20: ireturn codes (the “instruction set”).

Compiler Errors

Java has strict rules for syntax. If a program has invalid syntax, then the compiler
reports an error.

* did the programmer misspell or forget to declare a variable?
(“cannot resolve symbol”)

* did the programmer forget a semicolon or bracket ?
(“expecting ;”)

e are the types compatible ?
*eg 1nt 3 = 1.0;

If there is a compiler error (a.k.a. “syntax error”) then the compiler does not
produce a class file.

Compiler Errors

If there is a compiler/syntax error, then the
compiler does not produce a .class file.
You need to edit your code.

Java programs
(.java files)

Java
compiler

Java byte code
(.class files)

ASIDE: Compilers, Grace Hopper, WICS

High level languages and hence compilers were invented very earlier in CS.

One of the pioneers (1950s) was Grace Hopper.

Annual events for women in computer science:

* Grace Hopper Celebration of Women in Computing

 ACM Canadian Celebration of Women in Computing

Many women McGill CS students go to latter conference: see McGill Women in CS (WICS)

14

Running a Java Program

[
I
Java Virtual
Java byte code _ W output of
(.cl files) Machine the
.class files | M J rogram

The JVM is a program that runs on your
computer. The JVM simulates a specialized
Java computer (i.e. “virtual machine”).

Running a Java Program

I The JVM itself is
. a program which
Java Virtual i
Java byte code o Machine consists of
(.class files) WM machine code

i that runs on

your computer.
The JVM interprets the byte 1

code, translating it into
machine code instructions that

run on the physical computer. . output of
physical the
Think of this translation as FeT sl program

happening while the program is

running (although some of the
translation can be done in

advance too). 16

Java Runtime Environment (JRE)

Java byte code
(.class files)

The JRE includes the
implementation of the JVM
and precompiled standard
Java library files

It will be specific to your
operating system &
computer hardware.

Java Virtual
Machine
JVM

~

Java standard
class libraries
(byte code
.class files)

physical

computer

output of
the
program

17

Java programs |

(.java files)

“Portability”

Java

compiler (.class files)

Java byte code

Unlike C programs which must be
recompiled in order to run on
different operating systems &

hardware, the class files are
“portable”: they can run on any
computer. This is a key reason
why Java has been so popular.

-

Java Virtual
Machine
JVM

Java Class
libraries
byte code
(.class files)

~

output of
— the
program

physical

computer

18

Java Development Kit (JDK)

Java Virtual output of

Java programs | Java Java byte code Machine the

.java files compiler .class files
(-)L p ()] VM orogram

debugging The JDK includes the Java compiler and debugging tools |
tools needed for developing your own code, and the JRE. Ja'va C!ass
libraries

byte code
(.class files)

You can run programs on your computer with only the
JRE. But if you want to write (software development)
your own Java programs, you need the JDK.

You can compile from command line with
> Javac Example.java
> Java Example

physical

computer
19

o N N N N N N N N

Integrated Development Environment (IDE)

Java programs |

(.java files)

Java Java byte code
compiler (.class files)

Eclipse, Intelli) IDEA, NetBeans, Bluelay, Drlava,
etc IDE’s are applications that are built on top of
a JDK. They provide a graphical user interface
(GUI) and offer many useful tools for software
development.

Java Virtual
Machine
JVM

Java Class
libraries
byte code
(.class files)

———

physical
computer

output of
the
program

20

pl I ———

COMP 250

Lecture 4

Java Programming Overview
Debugging

Java documentation (API)
Packages

Fri. Jan. 14, 2022

1) compiler/syntax error
(discussed earlier)

Java programs
(.java files)

'--_-------’

Debugging: 3 kinds of error

\.

Java
compiler

J

Java byte code
(.class files)

/

Java Virtual
Machine
JIVM

Java Class librarie

byte code
(.class files)

_

2) Runtime error: the program does not finish executing. i.e. It “crashes”.
The IDE will give some information about what happened (what “exception” occurred).

3) Logic error: the program finishes executing but the result is incorrect.

output of
the
program

Runtime errors: Java “Exceptions”

Examples

e ArraylndexOutOfBoundsException
double[] x = {7.0, 2.3, 5.0};

System.out.println(x[3]);

Exception in thread "main" java.lang.ArraylndexOutOfBoundsException: Index 3

out of bounds for length 3

* NullPointerException

We will discuss this next week. We need reference types next week.

23

Debug Mode (Eclipse demo)

* set breakpoint

* execute a single statement at a time
* step over/into methods

* display variable values

* modify variables

COMP 250

Lecture 4

Java Programming Overview

Java documentation (API)
Packages

Fri. Jan. 14, 2022

Java Documentation (part of JDK

The Java Application Programming Interface (API) defines all classes in the
standard library. You can find the complete list via here. e.g. Math library

&« 6 @ docs.oracle.com/javase/8/docs/api/java/lang/Math.html QA B * » ‘

3 Java™ Platform
OVERVIEW PACKAGE “ USE TREE DEPRECATED INDEX HELP Standard Ed. 8

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3
java.lang
Class Math

java.lang.Object
java.lang.Math

public final class Math
extends Object

The class Math contains methods for performing basic numeric operations such as the elementary exponential, logarithm, square root, and trigonometric functions.

Unlike some of the numeric methods of class StrictMath, all implementations of the equivalent functions of class Math are not defined to return the bit-for-bit same results.
This relaxation permits better-performing implementations where strict reproducibility is not required.

By default many of the Math methods simply call the equivalent method in StrictMath for their implementation. Code generators are encouraged to use platform-specific
native libraries or microprocessor instructions, where available, to provide higher-performance implementations of Math methods. Such higher-performance
implementations still must conform to the specification for Math.

26

Method Summary

Methods

Modifier and Type Method and Description
static double abs(double a)

Returns the absolute value of a double value.
static float abs(float a)

Returns the absolute value of a fleat value.
static int abs(int a)
Returns the absolute value of an int value.
static long abs(long a)
Returns the absolute value of a long value.
static double acos(double a)
Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.

static double asin(double a)
Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.
static double atan(double a)
Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2.
static double atan2(double y, double x)
Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar coordinates (r, theta).
static double cbrt(double a)
Returns the cube root of a double value.
static double ceil(double a)
Returns the smallest (closest to negative infinity) double value that is greater than or equal to the argument and is €
static double copySign(double magnitude, double sign)
Returns the first floating-point argument with the sign of the second floating-point argument.
static float copySign(float magnitude, float sign)
Returns the first floating-point argument with the sign of the second floating-point argument.
static double cos(double a)
Returns the trigonometric cosine of an angle.
static double cosh(double x)

Returns the hyperbolic cosine of a double value.
27

static double exp(double a)

Sample entry

static double

abs(double a)

/ Returns the zaxs\olute value of a double value.

It specifies the name of the method and the parameters (number and type).
The name + types of each parameter define the method’s signature.

The return type and other modifiers (static) are also specificed

There is also a detailed description
of what the method does.

abs
public static double abs(double a)

Returns the absolute value of a double value. If the argument is not negative, the argument is returned. If the ar
« If the argument is positive zero or negative zero, the result is positive zero.
« If the argument is infinite, the result is positive infinity.
« |f the argument is NaN, the result is NaN.
In other words, the result is the same as the value of the expression:
Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)
Parameters:
a - the argument whose absolute value is to be determined
Returns:

the absolute value of the argument.

28

ASIDE:

If you are doing software development as part of a
team, then you may be asked to make
documentation for the Java classes that you write
and that will be used by others.

Javadoc is a tool for creating a class APl in form of
an html file. The APl is nicely formatted when
displayed in a browser.

 In Eclipse, File > Export

 Expand Java, select Javadoc. Then
click Next.

Javadoc is not necessary for COMP 250.

Javadoc

£ Generate Javadoc | X
Javadoc Generation @ A
Select types for Javadoc generation. ‘ J

Javadoc command:
‘ C:\Program Files\Java\jdk-12.0.2\bin\javadoc.exe v ‘ Configure...
Select types for which Javadoc will be generated:
[J & assignments2019.Adstarter ~ m FoodPlace.java A
O assignments2021.a1 m FastFood.java
[J & assignments2021.aistarter m TaxCollectorjava
[m] 8 assignments2021.a2soln Om TestMain.java
[J8# assignments2021.a2starter m Testjava
] assignments2021.a3 o [3) customerjava
L —] . . mAms A .
< > m IncomeTaxPayer java v
Create Javadoc for members with visibility:
QO Private O Package O Protected @ Public
Public: Generate Javadoc for public classes and members.
@ Use standard doclet
Destination: C:\Users\Michael\Dropbox\Eclipse (Yoga)\250\doc Browse...
(O Use custom doclet
@ < Back Next > Cancel

29

COMP 250

Lecture 4

Java Programming Overview

Packages

Fri. Jan. 14, 2022

Packages

A package is a set of classes. The two on left are examples from the standard Java library.
The two on right are examples of my own packages.

HashMap.java Arrays.java

| .
! java.lang ; | demos |
| | | 1
| | | 1
| . . . 1
i String.java Byte.java ! ! Dog.java Carjava |
1 |
| | " 1
| . . 1 | I
: Math java Double java ! . | Point2D.java Person.java i
|
Lo o e e e boo oo
. javawutil i
: : : :
! | 3_2019 '
| | LinkedList.java Date.java | 1 : 2= :
1 1 1 1
! : ! | Datum.java KDTree.java | !
: ! : :
1 : 1 |
: |
1

We put a package statement at the first line of our class definition file.

This says which package the class belongs to.

[DEMO THIS IN ECLIPSE]

Point2D.java

package demos;

class Point2D{

32

Example (Eclipse)

& Eclipse (Yoga) - 250/src/demos/Point2D.java - Eclipse IDE
File Edit Source Refactor Navigate Search Project Run Window Help

NN B0 Q- Q- B GBS P BE
= | [4 Point2Djava &%

5= PEESO}%srcPEdem s b Q.Point2DP
package demos;

2

3| class Point2D {

4

5 int > &

6 int v;

7 static int numberOfPoint2D;
8

9= Point2D(int x, int y){

10 this.x = X;
11 this.y = y;

12 numberOfPoint2D += 1 ; // increment
13 1

=
'S

Example (Eclipse)

& Eclipse (Yoga) - 250/srcfdemos/Point2D.java | Eclipse IDE

File Edit Source Refactor Navigate Search Project Run Window Help

NN -0 G U WG I®SE - P A RE T oG

@ *Point2D.java
J

>
=

250 » & orc » S demos P Point2D »
package demos_lecturel

#3 The declared package "demos_lecture” does not match the expected package "demos”

2 quick fixes available:

#}, Move 'Point2D.java’ to package ‘demos lecture’

B} Change package declaration to ‘demos’

B

il

2

3 c¢lass Po
4

5

6

7

8

s]S]

Point2D(int x, int y){

10 this. x = X;

11 this.y = y;

12 numberOfPoint2D += 1 ; // increment
13 1

14

34

Packages and File folders

Packages are organized as folders on your computer file system.
In this Eclipse example, there is a project name (“250”) and the .java files are in the directory:
C:\Users\MichaellLanger\Dropbox\Eclipse\250\src\demos\Point2D.java

) Eclipse

& Eclipse (Yoga) - 250/src/demos/Point2D.java { Eclipse IDE
Eile Edit Source Refactor Navigate Search Project Run Window Help

= | [J] Point2Djava %

> 5250 » @8 src » B demos » @ Point2D »
* package demos;

static int numberOfPoint2D;

2 Point2D

3 |class Point2D { TestArithmetic
4

5 int %3

6 int Y5

7

35

You can have packages within packages, corresponding to file folders within file folders.
e.g. C:\Users\YourName\Dropbox\Eclipse\250\src\demos\recursion\TestFactorial.java

The package name matches the folder path.
On the file system, subfolders are indicated with a "slash”.
In the package name, a “dot” is used.

& Eclipse (Yoga) - 250/srcfdemos/recursion/TestFactorial.java | Eclipse IL

File Edit Source Refactor Navigate Search Project Run Window Hel
I Wi O "R QU HGIBE Y
5, m TestFactorial java o<

E > E!jd 250 » @ src » i demos.recursion » @ TestFactorial »
1 package| demos.recursion;
2

3 class TestFactorial {
4
=

// hla hla hla

Point2D

TestArithmetic

TestFactorial

36

Packages and File Folders

250/src/ contains source code e.g. TestArithmetic.java
250/bin/ contains Java byte code e.g. TestArithmetic.class

For more information on packages and file folders, see here.

Coming up...

Lectures Homework (TODO)

Mon. Jan 17 arrays

Wed. Jan. 19 objects & classes 1:

(wrapper classes, strings)
* Simple coding exercises (posted soon)

Fri. Jan. 21 objects & classes 2
Assignment 1 to be posted Fri. Jan. 28 (2 weeks).

38

