COMP 250

Lecture 37

big Theta Θ best and worst cases limit rules

April 8, 2022

Previous two lectures

- big O - asymptotic upper bounds
- big Omega ($\mathbf{\Omega}$) - asymptotic lower bounds

Definition of Big Theta (Θ)

Let $t(n)$ and $g(n)$ be two functions of $n \geq 0$.

We say $t(n)$ is $\Theta(\boldsymbol{g}(\boldsymbol{n}))$ if $t(n)$ is both $O(g(n))$ and $\Omega(g(n))$. namely, if there exist three positive constants n_{0}, c_{1}, c_{2} such that, for all $n \geq n_{0}$,

$$
c_{1} g(n) \leq t(n) \leq c_{2} g(n)
$$

Example: $t(n)$ is $\Theta(n)$

$c_{2} n$

Example

dominant term \downarrow

Let $t(n)=4+17 \log _{2} n+3 n+9 n \log _{2} n+\frac{\boldsymbol{n}(\boldsymbol{n}-\mathbf{1})}{\mathbf{2}}$

Claim:

$$
t(n) \text { is } \Theta\left(n^{2}\right)
$$

We can prove it by applying the formal definitions of O() and $\Omega()$. Details omitted.

Recall last lectures: $0, \Omega$ sets

Sets of Θ () functions

If $t(n)$ is $\Theta(g(n))$, we often write $t(n) \in \Theta(g(n))$,
That is, $t(n)$ is a member of the set of functions that are $\Theta(g(n))$.
These sets are disjoint.

The funny geometry of the shapes here are just meant to convey that we are taking the intersection of a big O set and a big Omega set, which I have illustrated on the previous slide as ellipsoids. Do not attach any other significance to these funny shapes!

The figure below suggests that there are functions $t(n)$ that don't belong to any of the $\Theta(g(n))$ sets.

What is an example of such a function?

Here is an example of a function that doesn't belong to any of the $\Theta(g(n))$ sets:

Let $t(n)= \begin{cases}n, & n \text { is even } \\ 5, & n \text { is odd. }\end{cases}$
$t(n)$ is in $O(n)$ and $\Omega(1)$.

But $t(n)$ is in neither $O(1)$ nor $\Omega(n)$.

Q: The functions $t(n)$ that we care about in this course all belong to some $\Theta()$.

So why are we talking about O() and $\Omega()$?

A: We sometimes want to discuss upper bounds or lower bounds for an algorithm over all its inputs.

For examples, when we are discussing a best case we typically have in mind an lower bound $\Omega()$, and when we are discussing a worst case we typically have in mind an upper bound O() , respectively.

COMP 250

Lecture 37

big Theta Θ
 best and worst cases limit rules

April 8, 2022

Best and Worst Cases

The time* it takes for an algorithm to run depends on:

- the size n of the input
- the values of the input \leftarrow best versus worst case
- constant factors (\#instructions, CPU, programming language)
* As we have seen, "time" could be measured in number of instructions, or number of particular operations, etc.

For some algorithm, suppose the input size is n.

Let $\boldsymbol{t}_{\text {best }}(\boldsymbol{n})$ be the time taken for the best case input.

Let $\boldsymbol{t}_{\boldsymbol{w o r s t}}(\boldsymbol{n})$ be the time taken for the worse case input.

These are specific functions, so they have a specific $\Theta($) behavior.
For $\boldsymbol{t}_{\text {best }}(\boldsymbol{n})$, it is common to say $\Omega()$ or $\Theta()$, but not O() .
For $\boldsymbol{t}_{\boldsymbol{w o r s t}}(\boldsymbol{n})$, it is common to say O() or $\Theta()$, but not $\Omega()$.

One typically does not talk about an upper bound on the best case, or a lower bound on the worst case, although it would still be correct to do so.

Example of best \& worst cases

Arraylist.remove(i)
In the best case, i == size-1 and so the operation takes constant time. So,

$$
t_{\text {best }}(n) \text { is } \Omega(1) \text { or } \Theta(1)
$$

In the worst case, i == 0 and all elements must be shifted. So,

$$
t_{\text {worst }}(n) \text { is } O(n) \text { or } \Theta(n)
$$

Recall Binary Search Tree Complexity (lecture 26)

In the earlier lecture, we used O() for best case. But it would make more sense to say Ω () for best case, if we are emphasizing (tight) lower bound.

best case worst case

find(key)	$\Omega(1)$	$\mathrm{O}(n)$
findMin()	$\Omega(1)$	$\mathrm{O}(n)$
findMax()	$\Omega(1)$	$\mathrm{O}(n)$
add(key)	$\Omega(1)$	$\mathrm{O}(n)$
remove(key)	$\Omega(1)$	$\mathrm{O}(n)$

Recall that best and worst cases are different for each.
$\mathrm{O}(n)$

Recall Binary Search Tree Complexity

 (lecture 26)If we don't want to emphasize upper and lower bound, and instead we just want to characterize the function, then we can use $\Theta()$.

best case worst case

find(key)
$\Theta(1)$
$\Theta(n)$
findMin()
$\Theta(1)$
$\Theta(n)$
findMax()
$\Theta(1)$
$\Theta(n)$
add(key)
$\Theta(1)$
$\Theta(n)$
remove(key)
$\Theta(1)$
$\Theta(n)$

Example: Best and worst case for Lists

add, remove, find an element (array list or linkedlist)
insertion sort
selection sort
binary search
(sorted array list)
mergesort
quicksort

$\Theta(n)$
$\Theta\left(n^{2}\right)$
$\Theta\left(n^{2}\right) \quad \Theta\left(n^{2}\right)$
$\Theta(1) \quad \Theta(\log n)$
best $=$ worst
$\Theta(n \log n) \quad \Theta(n \log n)$
$\Theta(n \log n) \quad \Theta\left(n^{2}\right)$

COMP 250

Lecture 37

big Theta Θ best and worst cases limit rules

April 8, 2022

Q: Can we use limits to prove the $0, \Omega, \Theta$ behavior of a function $t(n)$?

A: Yes, if we apply certain rules.

Limit Rules: Case 1a

Suppose we have $t(n)$ and $g(n)$.

If $\quad \lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=0$
then $\quad t(n)$ is $\mathrm{O}(g(n))$.

Why? I will sketch the proof on the next two slides.

Why? Recall definition of Big O

Let $t(n)$ and $g(n)$ be two functions, where $n \geq 0$.

We say $t(n)$ is $\mathrm{O}(g(n))$, if there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}$,

$$
t(n) \leq c g(n)
$$

or equivalently

$$
\frac{t(n)}{g(n)} \leq c
$$

Suppose that: $\quad \lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=0$

It follows from the formal definition of a limit (lecture 35) that, for any $c>0, \frac{t(n)}{g(n)}$ will become less than c when n is large enough. This implies that $t(n)$ is $\mathrm{O}(g(n))$.

What about the opposite statement (converse)?

If $t(n)$ is $\mathrm{O}(g(n))$ then $\lim _{\boldsymbol{n} \rightarrow \infty} \frac{\boldsymbol{t}(\boldsymbol{n})}{\boldsymbol{g (n)}}=\mathbf{0} \quad$????

No! For example, take $t(n)=g(n)$.

Then $t(n)$ is $\mathrm{O}(g(n))$, but $\frac{\boldsymbol{t}(\boldsymbol{n})}{\boldsymbol{g}(\boldsymbol{n})}=1$ for all n.

Limit Rules: Case 1b

If $\quad \lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=0$
then $\quad t(n)$ is $\mathrm{O}(g(n))$

But $\quad t(n)$ is not $\Omega(g(n))$.

Thus, $\quad t(n)$ is not $\Theta(g(n))$.

Proof is on the next slide (by contradiction).

By definition, " $t(n)$ is $\Omega(g(n))$ " means that:

there exist two constants n_{0} and $c>0$ such that,
for all $n \geq n_{0}, \quad t(n) \geq c g(n)$, or equivalently $\frac{t(n)}{g(n)} \geq c$.
But this would directly contradict the fact that:

$$
\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=0
$$

Limit Rules: Summary of Case 1

If

$$
\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=0
$$

then:

$$
\begin{aligned}
& t(n) \text { is } \quad O(g(n)) \\
& t(n) \text { is not } \Omega(g(n))
\end{aligned}
$$

Thus, $\quad t(n)$ is not $\Theta(g(n))$.

Limit Rules: Case 2

If $\quad \lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=\infty$
then:
$t(n)$ is ... ?
$t(n)$ is not ...?

Limit Rules: Case 2

If

$$
\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=\infty
$$

then:
$t(n)$ is $\Omega(g(n))$.
$t(n)$ is not $O(g(n))$

BTW, some equivalent statements...

$$
\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=\infty \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty} \frac{g(n)}{t(n)}=0
$$

$t(n)$ is $\Omega(g(n)) \quad \Leftrightarrow \quad g(n)$ is $\mathrm{O}(t(n))$
$t(n)$ is not $\mathrm{O}(g(n)) \Leftrightarrow g(n)$ is not $\Omega(t(n))$

Limit Rules: Case 3

If

$$
\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=c, \quad 0<c<\infty
$$

then

$$
t(n) \text { is } \Theta(g(n))
$$

Proof (sketch only):

Limit Rules

All three rules just discussed say that if a limit exists:

$$
\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)} \text { is } 0, \infty, \text { or } c>0
$$

then we can say something about the $\mathrm{O}, \Omega, \Theta$ relationship between $t(n)$ and $g(n)$.

However, if the limit does not exist, then the limit rules do not tell us anything.

Final Exam

- Closed book. No crib sheet. No calculators.
- 45 Questions. Multiple choice: 4 choices per question.
- Do not leave any questions blank!
- If you get $20 / 45$ or worse, then the highest grade you can get in course is D. See grading policy on the Course Outline.

Final Exam - how to prepare?

- review lectures that you didn't quite understand
- do the exercise PDFs
- do practice quizzes
- do not review the assignments

Thinking about Graduate School ?

I will add to mycourses a lecture from Fall where I talk about CS graduate school (MSc, PhD).

- why or why not get a graduate degree (in CS) ?
- my experience(s)
- research life
- MSc vs. PhD, preparations
- equity, diversity, inclusion

Please fill out Mercury Course Evaluations.

I plan to have office hours on April 29 \& 20.

I will be on the discussion board in the meantime.

Good luck with studying !

