COMP 250

Lecture 37

big Theta Θ best and worst cases limit rules

April 8, 2022

Previous two lectures

- big O asymptotic upper bounds
- big Omega (Ω) asymptotic lower bounds

Definition of Big Theta (Θ)

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Theta(g(n))$

if t(n) is both O(g(n)) and $\Omega(g(n))$.

namely, if there exist three positive constants n_0 , c_1 , c_2 such that, for all $n \ge n_0$,

$$c_1 g(n) \le t(n) \le c_2 g(n).$$

Example: t(n) is $\Theta(n)$

 n_0

4

We can prove it by applying the formal definitions of O() and $\Omega($) . Details omitted.

Recall last lectures: O, Ω sets

Sets of Θ () functions

If t(n) is $\Theta(g(n))$, we often write $t(n) \in \Theta(g(n))$,

That is, t(n) is a member of the set of functions that are $\Theta(g(n))$.

These sets are disjoint.

The funny geometry of the shapes here are just meant to convey that we are taking *the intersection of a* big O set and a big Omega set, *which I have illustrated on the previous slide as ellipsoids*. Do not attach any other significance to these funny shapes!

The figure below suggests that there are functions t(n) that don't belong to any of the $\Theta(g(n))$ sets.

What is an example of such a function?

Here is an example of a function that doesn't belong to any of the $\Theta(g(n))$ sets :

Let
$$t(n) = \begin{bmatrix} n, & n & \text{is even} \\ \\ 5, & n & \text{is odd.} \end{bmatrix}$$

t(n) is in O(n) and $\Omega(1)$.

But t(n) is in neither O(1) nor $\Omega(n)$.

Q: The functions t(n) that we care about in this course all belong to some $\Theta($).

So why are we talking about O() and $\Omega($) ?

A: We sometimes want to discuss upper bounds or lower bounds for an algorithm over all its inputs.

For examples, when we are discussing a best case we typically have in mind an lower bound $\Omega()$, and when we are discussing a worst case we typically have in mind an upper bound O(), respectively.

COMP 250

Lecture 37

big Theta Θ best and worst cases limit rules

April 8, 2022

Best and Worst Cases

The time* it takes for an algorithm to run depends on:

- the size *n* of the input
- the values of the input ← **best versus worst case**
- constant factors

(#instructions, CPU, programming language)

* As we have seen, "time" could be measured in number of instructions, or number of particular operations, etc.

For some algorithm, suppose the input size is n.

Let $t_{best}(n)$ be the time taken for the best case input.

Let $t_{worst}(n)$ be the time taken for the worse case input.

These are *specific* functions, so they have a *specific* $\Theta()$ behavior.

For $t_{best}(n)$, it is *common* to say $\Omega()$ or $\Theta()$, but not O().

For $t_{worst}(n)$, it is *common* to say O() or $\Theta()$, but not $\Omega()$.

One typically does not talk about an upper bound on the best case, or a lower bound on the worst case, although it would still be correct to do so.

Example of best & worst cases

Arraylist.remove(i)

In the best case, i == size-1 and so the operation takes constant time. So,

$$t_{best}(n)$$
 is $\Omega(1)$ or $\Theta(1)$

In the worst case, i == 0 and all elements must be shifted. So,

 $t_{worst}(n)$ is O(n) or $\Theta(n)$.

Recall Binary Search Tree Complexity (lecture 26)

In the earlier lecture, we used O() for best case. But it would make more sense to say $\Omega()$ for best case, if we are emphasizing (tight) lower bound.

	<u>best case</u>	worst case	
find(key)	Ω (1)	$\mathrm{O}(n)$	
findMin()	Ω (1)	O(n)	Recall that best and worst cases are different for each.
findMax()	Ω (1)	O(n)	
add(key)	Ω (1)	O(n)	
remove(key)	Ω (1)	$\mathrm{O}(n)$	

15

Recall Binary Search Tree Complexity (lecture 26)

If we don't want to emphasize upper and lower bound, and instead we just want to characterize the function, then we can use $\Theta($).

	<u>best case</u>	worst case
find(key)	$\Theta(1)$	$\Theta(n)$
findMin()	$\Theta(1)$	$\Theta(n)$
findMax()	$\Theta(1)$	$\Theta(n)$
add(key)	$\Theta(1)$	$\Theta(n)$
remove(key)	$\Theta(1)$	$\Theta(n)$

Example: Best and worst case for Lists

	$t_{best}(n)$	$t_{worst}(n)$	
add, remove, find an element (array list or linkedlist)	$\Theta(1)$	$\Theta(n)$	
insertion sort	$\Theta(n)$	$\Theta(n^2)$	
selection sort	$\Theta(n^2)$	$\Theta(n^2)$	
binary search (sorted array list)	$\Theta(1)$	$\Theta(\log n)$	best = worst
mergesort	$\Theta(n \log n)$	$\Theta(n\log n)$	
quicksort	$\Theta(n\log n)$	$\Theta(n^2)$	

COMP 250

Lecture 37

big Theta Θ best and worst cases limit rules

April 8, 2022

Q: Can we use limits to prove the O, Ω , Θ behavior of a function t(n) ?

A: Yes, if we apply certain rules.

Limit Rules: Case 1a

Suppose we have t(n) and g(n).

If
$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0$$

then t(n) is O(g(n)).

Why? I will sketch the proof on the next two slides.

Why? Recall definition of Big O

Let t(n) and g(n) be two functions, where $n \ge 0$.

We say t(n) is O(g(n)), if there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

$$t(n) \le c g(n)$$

or equivalently

$$\frac{t(n)}{g(n)} \leq c$$
.

Suppose that:
$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0$$

It follows from the formal definition of a limit (lecture 35) that, for any c > 0, $\frac{t(n)}{g(n)}$ will become less than c when n is large enough. This implies that t(n) is O(g(n)).

What about the opposite statement (converse)?

If
$$t(n)$$
 is $O(g(n))$ then $\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0$????

No ! For example, take t(n) = g(n).

Then t(n) is O(g(n)), but $\frac{t(n)}{g(n)} = 1$ for all n.

Limit Rules: Case 1b

If
$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0$$

then t(n) is O(g(n))

But t(n) is not $\Omega(g(n))$.

Thus, t(n) is not $\Theta(g(n))$.

Proof is on the next slide (by contradiction).

By definition, "t(n) is $\Omega(g(n))$ " means that:

there exist two constants n_0 and c > 0 such that,

for all $n \ge n_0$, $t(n) \ge c g(n)$, or equivalently $\frac{t(n)}{g(n)} \ge c$.

But this would directly contradict the fact that:

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \mathbf{0}$$

Limit Rules: Summary of Case 1

If
$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = 0$$

then:
$$t(n)$$
 is $O(g(n))$ (1a)
 $t(n)$ is not $\Omega(g(n))$ (1b)

Thus, t(n) is not $\Theta(g(n))$.

Limit Rules: Case 2

If
$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \infty$$

then:

$$t(n)$$
 is ... ?

t(n) is not ... ?

Limit Rules: Case 2

If
$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \infty$$

then:

$$t(n)$$
 is $\Omega(g(n))$.

t(n) is not O(g(n))

BTW, some equivalent statements...

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \infty \qquad \Longleftrightarrow \qquad \lim_{n \to \infty} \frac{g(n)}{t(n)} = \mathbf{0}$$

t(n) is $\Omega(g(n)) \iff g(n)$ is O(t(n))

t(n) is not $O(g(n)) \iff g(n)$ is not $\Omega(t(n))$

Limit Rules: Case 3

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = c , \quad 0 < c < \infty$$

then

lf

$$t(n)$$
 is $\Theta(g(n))$.

Proof (sketch only):

30

Limit Rules

All three rules just discussed say that *if* a limit exists:

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} \text{ is 0, } \infty \text{, or } c > 0$$

then we can say something about the O, Ω , Θ relationship between t(n) and g(n).

However, *if* the limit does *not* exist, then the limit rules do *not* tell us anything.

Final Exam

- Closed book. No crib sheet. No calculators.
- 45 Questions. Multiple choice: 4 choices per question.
- Do not leave any questions blank!
- If you get 20/45 or worse, then the highest grade you can get in course is D. See grading policy on the Course Outline.

Final Exam – how to prepare?

- review lectures that you didn't quite understand
- do the exercise PDFs
- do practice quizzes
- do *not* review the assignments

Thinking about Graduate School ?

I will add to mycourses a lecture from Fall where I talk about CS graduate school (MSc, PhD).

- why or why not get a graduate degree (in CS) ?
- my experience(s)
- research life
- MSc vs. PhD, preparations
- equity, diversity, inclusion

Please fill out Mercury Course Evaluations.

I plan to have office hours on April 29 & 20.

I will be on the discussion board in the meantime.

Good luck with studying !