
1

COMP 250

Lecture 36

sets of  𝑂 functions 

rules for big O

big Omega W

April 6, 2022



Recall Formal Definition of Big O

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions, where 𝑛 ≥ 0.

We  say  𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive

constants  𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .

2



𝑛 ≥ 4𝑛 ≥ 3 𝑛 ≥ 3

Thus, we can write big O relationships between them,
e.g.  𝑛 is  𝑂( 𝑛 𝑙𝑜𝑔2𝑛 )

3

We use  functions 𝑔 𝑛 below.

Note: The following inequalities hold for 𝑛 sufficiently large: 

1 < 𝑙𝑜𝑔2𝑛 < 𝑛 < 𝑛 𝑙𝑜𝑔2𝑛 < 𝑛2 < 𝑛3 < . . . < 2𝑛 < 𝑛!



Sets of  𝑂 functions 

If 𝑡 𝑛 is  𝑂( 𝑔 𝑛 ),   we often write  

𝑡 𝑛 ∈ 𝑂 𝑔 𝑛 .

We say:   

“𝑡 𝑛 is a member of the set of functions that are 𝑂 𝑔 𝑛 .”

4



𝑂 1 ⊂ 𝑂 𝑙𝑜𝑔2𝑛 ⊂ 𝑂(𝑛) ⊂ 𝑂(𝑛 𝑙𝑜𝑔2𝑛 ) ⊂ 𝑂(𝑛2)

…  ⊂ 𝑂(𝑛3) ⊂ . . . ⊂ 𝑂(2𝑛 ) ⊂ 𝑂( 𝑛! )

Thus we have the following strict subset relationships: 

𝑂 1 𝑂 𝑙𝑜𝑔2𝑛 𝑂(𝑛) 𝑂(𝑛 𝑙𝑜𝑔2𝑛 ) etc

5



𝑂 1 𝑂 𝑙𝑜𝑔2𝑛 𝑂(𝑛) 𝑂(𝑛 𝑙𝑜𝑔2𝑛 ) etc

Tight Bounds

When we say “𝑡 𝑛 is 𝑂(𝑔(𝑛))”, typically we mean the smallest set 
that  𝑡 𝑛 belongs to,   i.e.  tight bounds.     

6



𝑂 1 𝑂 𝑙𝑜𝑔2𝑛 𝑂(𝑛) 𝑂(𝑛 𝑙𝑜𝑔2𝑛 ) etc

Tight Bounds

7

When we say “𝑡 𝑛 is 𝑂(𝑔(𝑛))”, typically we mean the smallest set 
that  𝑡 𝑛 belongs to,   i.e.  tight bounds.     

For example,   if  𝑡 𝑛 = 5𝑛 + 7, then the tight bound is 𝑂 𝑛
rather than 𝑂 𝑛 𝑙𝑜𝑔2𝑛 or something even larger.  



If we have some function 𝑡(𝑛) that is defined by a complicated 

expression,  we would like to say  “𝑡 𝑛 is O 𝑔 𝑛 ” where 𝑔 𝑛

is a simple function.

e.g. 𝑡 𝑛 = 5 𝑛 𝑙𝑜𝑔2 𝑛 + 3 + 17𝑛 + 4 is     𝑂 𝑛 𝑙𝑜𝑔2 𝑛 .

What are the general rules to justify using a simple function ?

8



Scaling Rule

Suppose   𝑓(𝑛) is  O 𝑔 𝑛 and let 𝑎 > 0.

Then       𝑎 𝑓(𝑛) is also   O 𝑔 𝑛 . 

So,  multiplying a function by a scale factor doesn’t change 
the big O set(s) that it belongs to.

If you understand the definition of big O, then this rule is 
obvious.    Let’s prove it anyhow. 

9



Scaling Rule

By definition,   if   𝑓 𝑛 is  𝑂( 𝑔 𝑛 ) then there exist two positive 
constants  𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 .

Thus...  ? 𝑎 𝑓 𝑛 ≤ 𝑎 𝑐 𝑔 𝑛 where 𝑎 > 0.

10



Scaling Rule

By definition,   if   𝑓 𝑛 is  𝑂( 𝑔 𝑛 ) then there exist two positive 
constants  𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛

or equivalently,      𝑎 𝑓 𝑛 ≤ 𝑎 𝑐 𝑔 𝑛 where 𝑎 > 0.

11

This constant 𝑎 𝑐 satisfies the 
definition that   𝑎 𝑓 𝑛 is 𝑂( 𝑔 𝑛 ).



Sum Rule

Motivation:      When terms are added, we only  need to 
consider the term with the largest big O bound.

For example,

𝟑 + 𝟓𝒏 is  𝐎(𝒏)

12

O(1) O(𝑛)



Sum Rule

Suppose 𝑓1 (𝑛) is  O 𝑔1 𝑛 and  𝑓2(𝑛) is O 𝑔2 𝑛 .

Then 𝑓1 𝑛 + 𝑓2 𝑛 is O max( 𝑔1 𝑛 , 𝑔2 𝑛 ).

Proof:     There are constants  𝑛1, 𝑐1 and 𝑛2, 𝑐2 such that

𝑓1 𝑛 ≤ 𝑐1 𝑔1(𝑛) for all  𝑛 ≥ 𝑛1

𝑓2 𝑛 ≤ 𝑐2 𝑔2(𝑛) for all 𝑛 ≥ 𝑛2.

Thus,     𝑓1 𝑛 + 𝑓2 𝑛 ≤ (𝑐1 + 𝑐2 ) max( 𝑔1(𝑛) , 𝑔2(𝑛) )  

for all 𝑛 ≥ max( 𝑛1 , 𝑛2 ) 

13



Product Rule

We want to be able to say, for example,

𝑡 𝑛 = 3 + 5𝑛 𝑙𝑜𝑔2(𝑛 + 7) is  O(𝑛 𝑙𝑜𝑔2𝑛) . 

i.e.  if two functions are multiplied together, then the O( ) of

their product is the product of their O( )’s. 

14

O(𝑛) O(𝑙𝑜𝑔2𝑛)



Product Rule

Suppose 𝑓1 (𝑛) is   O( 𝑔1 𝑛 ) and  𝑓2 (𝑛) is O 𝑔2 𝑛 .

Then 𝑓1 𝑛 ∗ 𝑓2 𝑛 is O 𝑔1 𝑛 ∗ 𝑔2 𝑛 .

Proof:     Let  𝑛1, 𝑐1 and 𝑛2, 𝑐2 be constants such that

𝑓1 𝑛 ≤ 𝑐1 𝑔1 𝑛 , for all  𝑛 ≥ 𝑛1

𝑓2 𝑛 ≤ 𝑐2 𝑔2(𝑛),    for all  𝑛 ≥ 𝑛2.

So,      𝑓1 𝑛 ∗ 𝑓2 𝑛 ≤ 𝑐1 𝑐2 𝑔1(𝑛) 𝑔2(𝑛)

for all  𝑛 ≥ max( 𝑛1, 𝑛2 )

15



It is because of these rules that we can say, for example:

𝑡 𝑛 = 5 𝑛 𝑙𝑜𝑔2 𝑛 + 3 + 17𝑛 + 4 is     𝑂 𝑛 𝑙𝑜𝑔2 𝑛 .

16



17

COMP 250

Lecture 36

sets of  𝑂 functions 

rules for big O

big Omega W

April 6, 2022



“small omega”   w

“big omega”      W

18



Big Omega (Ω ):  asymptotic lower bound

Sometimes we want to say that an algorithm takes at least  
a certain time to run, as a function of the input size 𝑛.

Example 1:

Let 𝑡(𝑛) be the time it takes for algorithm X to find the 
maximum value in an array of 𝑛 numbers.    

Then 𝑡 𝑛 is Ω 𝑛 . (This should be intuitively obvious.)

19



e.g.    𝑡 𝑛 is  W( 𝑛)

20

𝑐 𝑛

𝑡 𝑛

𝑛
𝑛0



Big Omega (Ω ):  asymptotic lower bound

Example 2:  (Comparison based sorting)

Let 𝑡(𝑛) be the number of element comparisons used by some 
algorithm (X)  to sort an array of 𝑛 numbers.    

One can prove* that 𝑡 𝑛 is  Ω 𝑛 𝑙𝑜𝑔2 𝑛

That is, no faster comparison-based sorting algorithm is possible 
than the ones we have seen (e.g. X = merge/heap/quicksort).

*[Updated after lecture:   Strictly speaking, this is a statement 

about on average case.  You will cover this in COMP 251.]  

21



e.g.    𝑡 𝑛 is  W( 𝑛 𝑙𝑜𝑔2𝑛 )

22

𝑐 𝑛 𝑙𝑜𝑔2𝑛

𝑡 𝑛

𝑛
𝑛0



Plot of  𝑛 𝑙𝑜𝑔2𝑛 vs. 𝑛

10 ∗ 105

= 𝟏𝟎𝟔

≈ 217

23

The plot seems to be linear.
However,  it is not.   Slope 
increases by 1 each time we 
double n.

𝑛

𝑛 𝑙𝑜𝑔2𝑛

𝟏𝟕 ∗ 𝟏𝟎𝟔



Towards a Formal Definition of Big W

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions, where 𝑛 ≥ 0.

We  say  𝑡 𝑛 is asymptotically bounded below by 𝑔 𝑛

if there exist a constant 𝑛0 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≥ 𝑔 𝑛 .

Note that  𝑔 𝑛 here might not be a simple function.

24



Formal Definition of Big Omega (W)

Let  𝑡 𝑛 and 𝑔 𝑛 be two functions of 𝑛 ≥ 0.

We  say  𝑡 𝑛 is  W 𝑔 𝑛 if there exist two positive constants  

𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≥ 𝑐 𝑔 𝑛 .

As with big O,  having a constant 𝑐 lets 𝑔 𝑛 be a simple function.

25



Example :    𝑡(𝑛) =
𝑛(𝑛−1)

2
.        𝑡(𝑛) is  W 𝑛2 .

Proof:    How to choose  𝑐 ?

𝑛(𝑛−1)

2
≥ 𝑐𝑛2 ?

26



Example :    𝑡(𝑛) =
𝑛(𝑛−1)

2
.        𝑡(𝑛) is  W 𝑛2 .

Proof:    Try  𝑐 =
1

4
.

𝑛(𝑛−1)

2
≥

𝑛2

4

⟺ 2𝑛 𝑛 − 1 ≥ 𝑛2

⟺ 𝑛2 ≥ 2𝑛

⟺ 𝑛 ≥ 2 .          So  we can take 𝑛0 = 2.

“⟺ " means “if and only if”  i.e.  same true/false value
27

Heads up!
This inequality may be either true or 
false,  depending on 𝑛.



Example :    𝑡(𝑛) =
𝑛(𝑛−1)

2
.        𝑡(𝑛) is  W 𝑛2 .

Proof (2):      Try 𝑐 =
1

3

𝑛(𝑛−1)

2
≥

𝑛2

3

⟺ :              you can fill this in 

⟺ 𝑛 ≥ 3

So  take 𝑛0 = 3, 𝑐 =
1

3
.

28



Relationship of Big O and Big Omega (W)

Let  𝑓 𝑛 and 𝑔 𝑛 be two functions of 𝑛 ≥ 0.

The following are equivalent statements:

𝑓 𝑛 is  O 𝑔 𝑛

𝑔 𝑛 is  W 𝑓 𝑛 .

Why?

𝑓 𝑛 < 𝑐 𝑔 𝑛 ≡ 𝑔 𝑛 >
1

𝑐
𝑓 𝑛

29



Sets of   W functions 

If 𝑡 𝑛 is   W( 𝑔 𝑛 ),   we often write or say:

𝑡 𝑛 ∈ W 𝑔 𝑛 .

𝑡 𝑛 is a member of the set of functions that are  W 𝑔 𝑛 .

30



W 1 ⊃ W 𝑙𝑜𝑔2𝑛 ⊃ W 𝑛 ⊃ W(𝑛 𝑙𝑜𝑔2𝑛 )

⊃ W(𝑛2) … ⊃ W(𝑛3) ⊃ . . . W(2𝑛 ) ⊃ W( 𝑛! )

As with big O,   we have strict subset relationships : 

W 1 W 𝑙𝑜𝑔2𝑛 W(𝑛) W(𝑛 𝑙𝑜𝑔2𝑛 ) etc

31

Note the biggest set is now  W 1 . 𝑒. 𝑔. any positive non-decreasing 
function  𝑡 𝑛 will be bounded below by a constant.



For example,    if 𝑡(𝑛) belongs to   W 𝑛 , then  𝑡(𝑛) also belongs 
to W 𝑙𝑜𝑔2𝑛 and to W 1 .

We can again talk about tight lower bounds.     For example, W 𝑛
is a tight lower bound for  𝑡(𝑛) in the example below.    
i.e.   W 𝑛 is the smallest   W set that contains 𝑡(𝑛).

W 1 W 𝑙𝑜𝑔2𝑛

32

W(𝑛) W(𝑛 𝑙𝑜𝑔2𝑛 ) etc

𝑡(𝑛)



Exercises (see PDF)

33

Q  12:      Let  𝑡 𝑛 =
1

𝑛
.        Is   𝑡 𝑛 ∈ W 1 ?

A:   No.      Apply the definition:

𝑡 𝑛 is  W 1 if there exist two constants  𝑛0 > 0 and 𝑐 > 0

such that,   for all 𝑛 ≥ 𝑛0 ,     𝑡 𝑛 ≥ 𝑐 .

But  this is impossible.    See below.  

𝑛
𝑐

𝑡 𝑛 =
1

𝑛



Coming up…

Lectures

Fri :    April 8

big Theta,   best and worst cases 

Mon Aprill 11  (class cancelled)

I will try to have OH before final exam.

Assessments

Assignment 4 due today.

Final Exam  Thurs.  April 21  (2 weeks)

34


