COMP 250

Lecture 36

sets of O() functions
rules for big O

big Omega Q)

April 6, 2022

Recall Formal Definition of Big O

Let t(n) and g(n) be two functions, where n > 0.

We say t(n)is O(g(n)) if there exist two positive

constants ny and ¢ suchthat, foralln = ng,

t(n)< c g(n).

We use functions g(n) below.

Note: The following inequalities hold for n sufficiently large:

1 < logon< n < nlog,n < n* < n¥<...<2™ < nl

(J | J
Y t Y / Y

n =3 n =3 n =>4

Thus, we can write big O relationships between them,
e.g. nis O(nlog,n)

Sets of O() functions

If t(n)is 0(g(n)), we often write
t(n) € 0(g(n)).
We say:

“t(n) is a member of the set of functions thatare 0(g(n)).”

Thus we have the following strict subset relationships:

0(1) ¢ 0(og,n) c 0(n) c O(nlogyn) c 0(n?)

.coOm®c ...co@™) co(n!)

0(logzn@>

Tight Bounds

When we say “t(n) is 0(g(n))”, typically we mean the smallest set
that t(n) belongs to, i.e. tight bounds.

0(logzn@>

Tight Bounds

For example, if t(n) = 5n + 7, then the tight bound is O(n)
rather than O(n log,n) or something even larger.

o

If we have some function t(n) that is defined by a complicated
expression, we would like to say “t(n) is O(g(n))” where g(n)
is a simple function.

eg. ttn)=5nlog,(n+3)+17n +4 is 0O(nlog,n).

What are the general rules to justify using a simple function ?

Scaling Rule

Suppose f(n) is O(g(n)) andlet a > 0.

Then af(n) is also O(g(n)).

So, multiplying a function by a scale factor doesn’t change
the big O set(s) that it belongs to.

If you understand the definition of big O, then this rule is
obvious. Let’s prove it anyhow.

Scaling Rule

By definition, if f(n)is O(g(n)) then there exist two positive
constants ny and ¢ suchthat, foralln = n,,

f(n) < ¢ g(n).

Thus... ?

Scaling Rule

By definition, if f(n)is O(g(n)) then there exist two positive
constants ny and ¢ suchthat, foralln = n,,

f(n)< ¢ g(n)

or equivalently, af(n) < ac g(n)wherea > 0.

k_Y_J

This constant a ¢ satisfies the
definitionthat a f(n)is0(g(n)).

Sum Rule

Motivation: When terms are added, we only need to
consider the term with the largest big O bound.

For example,

3+ 5n is O(n)

P

Sum Rule

suppose f; () is 0(g1(m) and f,(n) is 0(g,(W)).
Then fi(n)+f; (n) is O(max(g,(n), g(n))).

Proof: There are constants nq, c; and n,, ¢, such that
fi(n) < c; gy(n) forall n = ny
for(n) < c, g,(n) forall n = n,.

Thus, fi(M)+f,(n) < (¢ +c) max(g1(n), g2(n))

foralln =max(ny, n,)

Product Rule
We want to be able to say, for example,

ttn) = (3+5n)log,(n+7) is O(nlogyn).

/ X

i.e. if two functions are multiplied together, then the O() of

their product is the product of their O()’s.

Product Rule
Suppose f; (n)is 0(gy (n)) and f, (n)is 0(g, (n)).
Then f; (n) * f, () is O(g1(n) * g,(n)).
Proof: Let ny,¢; andn,,c, be constants such that

fi (n)
fo (n)

ci g¢(n), foralln = n,

c, g,(n), forall n = n,.

IA 1A

So, fin) *xf,(M)< ¢ ¢, g1(n) go(n)

forall n = max(nq,n,)

It is because of these rules that we can say, for example:

ttn) = 5nlog,(n+3)+17n +4 is O0O(nlog,n).

COMP 250

Lecture 36

big Omega Q)

April 6, 2022

“big omega” Q)

Big Omega ({2): asymptotic lower bound

Sometimes we want to say that an algorithm takes at least
a certain time to run, as a function of the input size n.

Example 1:

Let t(n) be the time it takes for algorithm X to find the
maximum value in an array of n numbers.

Then t(n) is Q(n).

e.g. t(n)is Q(n)

Big Omega ({2): asymptotic lower bound

Example 2: (Comparison based sorting)

Let t(n) be the number of element comparisons used by some
algorithm (X) to sort an array of n numbers.

One can prove* that t(n) is Q(n log, n)

That is, no faster comparison-based sorting algorithm is possible
than the ones we have seen (e.g. X = merge/heap/quicksort).

*[Updated after lecture: Strictly speaking, this is a statement
about on average case. You will cover this in COMP 251.]

21

e.g. t(n)is Q(nlog,n)

t(n)

c nlog,n

17 x 10°

nlog,n

1.8

1.6

1.4

1.2

0.8

0.6

0.4r

0.2

Plot of nlog,n vs. n

x10
//
s
s

The plot seems to be linear. e

However, it is not. Slope /

increases by 1 each time we //

/
double n. -
//
yd
/’/
yd
e
///
,///
f')’// I
yd
// .
- /
.d/ 1
0 2 ‘n 6 8 10
L

%10

10 = 10°

= 10°
~ 217

Towards a Formal Definition of Big €2

Let t(n) and g(n) be two functions, where n = 0.
We say t(n) is asymptotically bounded below by g(n)

if there exist a constant ny such that, foralln = n,,

t(n) = g(n).

Note that g(n) here might not be a simple function.

Formal Definition of Big Omega (Q2)

Let t(n) and g(n) be two functions of n > 0.

We say t(n)is Q(g(n)) if there exist two positive constants

ng and ¢ such that, foralln =n,,

t(tn)= c g(n).

As with big O, having a constant ¢ lets g(n) be a simple function.

t(n)is Q(n?).

Proof: How to choose ¢ ?

n(n—1)
2

\Y,
a
S
N
N

t(n)is Q(n?).

Proof: Try ¢ = -
n(n-1) n2 Heads up!
= — This inequality may be either true or
2 4
false, depending on n.
s 2n(n — 1) > n?

= n¢ > 2n

= n=2. So we cantake ny, = 2.

“ means “if and only if” i.e. same true/false value

27

Example: t(n) = t(n)is Q(nz).

Proof (2): Tryc = %

2

n(n—1) > n-
— 3

2

= n >3

So take ny = 3, czé.

Relationship of Big O and Big Omega (£2)

Let f(n) and g(n) be two functions of n = 0.

The following are equivalent statements:
f(n)is O(g(n))
gm)is Q(f(n)).

Why?

1
fn) < cgn) gn) > ;f(n)

Sets of Q() functions

If t(n)is Q(g(n)), we often write or say:

t(n) € Q(gn)).

t(n) is a member of the set of functions that are Q(g(n)).

As with big O, we have strict subset relationships :
Q(1) o Q(log,n) D Q(n) o Q(nlogy,n)

5> Q%) ..o>2Qn*H > ... Q2" > Q(n!)

Note the biggest set is now Q(1). e. g. any positive non-decreasing
function t(n) will be bounded below by a constant.

For example, ift(n) belongsto Q(n), then t(n) also belongs
to Q(log,n) and to Q(1).

We can again talk about tight lower bounds. For example, QQ(n)
is a tight lower bound for t(n) in the example below.
i.e. Q(n)isthe smallest Q() setthat contains t(n).

ot

QD) | QUogz)| Q) etc

32

Exercises (see PDF)

Q 12: Let t(n) = -

s t(n) € Q(1) ?

A: No. Apply the definition:
t(n)is Q(1) if there existtwo constants n, >0 andc >0

such that, foralln >n,, t(n)= c.

But this is impossible. See below.

Coming up...

Lectures

Fri: April 8

big Theta, best and worst cases

Mon Aprill 11 (class cancelled)

| will try to have OH before final exam.

Assessments

Assignment 4 due today.

Final Exam Thurs. April 21 (2 weeks)

