COMP 250

Lecture 36

sets of O () functions
 rules for big 0

big Omega Ω

April 6, 2022

Recall Formal Definition of Big O

Let $t(n)$ and $g(n)$ be two functions, where $n \geq 0$.

We say $t(n)$ is $O(g(n))$ if there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}$,

$$
t(n) \leq c g(n)
$$

We use functions $g(n)$ below.
Note: The following inequalities hold for n sufficiently large:
$1<\log _{2} n<n<n \log _{2} n<n^{2}<n^{3}<\ldots<2^{n}<n!$
$n \geq 3$
$n \geq 3$
$n \geq 4$

Thus, we can write big O relationships between them, e.g. n is $O\left(n \log _{2} n\right)$

Sets of $O()$ functions

If $t(n)$ is $O(g(n))$, we often write

$$
t(n) \in O(g(n))
$$

We say:
" $t(n)$ is a member of the set of functions that are $O(g(n)) . "$

Thus we have the following strict subset relationships:

$O(1) \subset O\left(\log _{2} n\right) \subset O(n) \subset O\left(n \log _{2} n\right) \subset O\left(n^{2}\right)$

$$
\ldots \subset O\left(n^{3}\right) \subset \ldots \subset O\left(2^{n}\right) \subset O(n!)
$$

Tight Bounds

When we say " $t(n)$ is $O(g(n))$ ", typically we mean the smallest set that $t(n)$ belongs to, i.e. tight bounds.

Tight Bounds

When we say " $t(n)$ is $O(g(n))$ ", typically we mean the smallest set

 that $t(n)$ belongs to, i.e. tight bounds.For example, if $t(n)=5 n+7$, then the tight bound is $O(n)$ rather than $O\left(n \log _{2} n\right)$ or something even larger.

If we have some function $t(n)$ that is defined by a complicated expression, we would like to say " $t(n)$ is $\mathrm{O}(g(n))$ " where $g(n)$ is a simple function.
e.g. $t(n)=5 n \log _{2}(n+3)+17 n+4$ is $O\left(n \log _{2} n\right)$.

What are the general rules to justify using a simple function ?

Scaling Rule

Suppose $f(n)$ is $O(g(n))$ and let $a>0$.

Then $\quad a f(n)$ is also $O(g(n))$.

So, multiplying a function by a scale factor doesn't change the big O set(s) that it belongs to.

If you understand the definition of big 0 , then this rule is obvious. Let's prove it anyhow.

Scaling Rule

By definition, if $f(n)$ is $O(g(n))$ then there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}$,

$$
f(n) \leq c g(n)
$$

Thus... ?

Scaling Rule

By definition, if $f(n)$ is $O(g(n))$ then there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}$,

$$
f(n) \leq c g(n)
$$

or equivalently, $\quad a f(n) \leq a c g(n)$ where $a>0$.

This constant $a c$ satisfies the definition that $a f(n)$ is $O(g(n))$.

Sum Rule

Motivation: When terms are added, we only need to consider the term with the largest big O bound.

For example,

$$
\overbrace{\mathrm{O}(1)}^{\mathbf{3}+\mathbf{5 n} \text { is } \mathbf{O}(\boldsymbol{n})}
$$

Sum Rule

Suppose $f_{1}(n)$ is $O\left(g_{1}(n)\right)$ and $f_{2}(n)$ is $O\left(g_{2}(n)\right)$.
Then $f_{1}(n)+f_{2}(n)$ is $O\left(\max \left(g_{1}(n), g_{2}(n)\right)\right)$.
Proof: There are constants n_{1}, c_{1} and n_{2}, c_{2} such that

$$
\begin{aligned}
& f_{1}(n) \leq c_{1} g_{1}(n) \text { for all } n \geq n_{1} \\
& f_{2}(n) \leq c_{2} g_{2}(n) \text { for all } n \geq n_{2} .
\end{aligned}
$$

Thus, $f_{1}(n)+f_{2}(n) \leq\left(c_{1}+c_{2}\right) \max \left(g_{1}(n), g_{2}(n)\right)$
for all $n \geq \max \left(n_{1}, n_{2}\right)$

Product Rule

We want to be able to say, for example,

$$
t(n)=\underset{O(n)}{(3+5 n)} \log _{2}(n+7) \text { is } \mathrm{O}\left(n \log _{2} n\right)
$$

i.e. if two functions are multiplied together, then the O() of their product is the product of their $\mathrm{O}($)'s.

Product Rule

Suppose $f_{1}(n)$ is $O\left(g_{1}(n)\right)$ and $f_{2}(n)$ is $O\left(g_{2}(n)\right)$.

Then $f_{1}(n) * f_{2}(n)$ is $O\left(g_{1}(n) * g_{2}(n)\right)$.

Proof: Let n_{1}, c_{1} and n_{2}, c_{2} be constants such that

$$
\begin{aligned}
& f_{1}(n) \leq c_{1} g_{1}(n), \text { for all } n \geq n_{1} \\
& f_{2}(n) \leq c_{2} g_{2}(n), \text { for all } n \geq n_{2} .
\end{aligned}
$$

So, $\quad f_{1}(n) * f_{2}(n) \leq c_{1} c_{2} g_{1}(n) g_{2}(n)$ for all $n \geq \max \left(n_{1}, n_{2}\right)$

It is because of these rules that we can say, for example:

$$
t(n)=5 n \log _{2}(n+3)+17 n+4 \quad \text { is } \quad O\left(n \log _{2} n\right)
$$

COMP 250

Lecture 36

sets of O () functions rules for big 0

big Omega Ω

April 6, 2022

"small omega"

ω
"big omega" Ω

Big Omega (Ω) : asymptotic lower bound

Sometimes we want to say that an algorithm takes at least a certain time to run, as a function of the input size n.

Example 1:

Let $t(n)$ be the time it takes for algorithm X to find the maximum value in an array of n numbers.
Then $t(n)$ is $\Omega(n)$. (This should be intuitively obvious.)

e.g. $\quad t(n)$ is $\Omega(n)$

Big Omega (Ω) : asymptotic lower bound

Example 2: (Comparison based sorting)

Let $t(n)$ be the number of element comparisons used by some algorithm (X) to sort an array of n numbers.

One can prove* that $t(n)$ is $\Omega\left(n \log _{2} n\right)$
That is, no faster comparison-based sorting algorithm is possible than the ones we have seen (e.g. $X=$ merge/heap/quicksort).
*[Updated after lecture: Strictly speaking, this is a statement about on average case. You will cover this in COMP 251.]
e.g. $t(n)$ is $\Omega\left(n \log _{2} n\right)$

Plot of $n \log _{2} n$ vs. n

Towards a Formal Definition of $\operatorname{Big} \Omega$

Let $t(n)$ and $g(n)$ be two functions, where $n \geq 0$.
We say $t(n)$ is asymptotically bounded below by $g(n)$
if there exist a constant n_{0} such that, for all $n \geq n_{0}$,

$$
t(n) \geq g(n)
$$

Note that $g(n)$ here might not be a simple function.

Formal Definition of Big Omega (Ω)

Let $t(n)$ and $g(n)$ be two functions of $n \geq 0$.

We say $t(n)$ is $\Omega(g(n))$ if there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}$,

$$
t(n) \geq c g(n)
$$

As with big O , having a constant c lets $g(n)$ be a simple function.

Example: $t(n)=\frac{n(n-1)}{2} . \quad t(n)$ is $\Omega\left(n^{2}\right)$.
Proof: How to choose c ?

$$
\frac{n(n-1)}{2} \geq c n^{2} ?
$$

Example : $t(n)=\frac{n(n-1)}{2} . \quad t(n)$ is $\Omega\left(n^{2}\right)$.
Proof: Try $c=\frac{1}{4}$.

$$
\frac{n(n-1)}{2} \geq \frac{n^{2}}{4}
$$

Heads up!
This inequality may be either true or false, depending on n.
$\Leftrightarrow \quad 2 n(n-1) \geq n^{2}$
$\Leftrightarrow \quad n^{2} \geq 2 n$
$n \geq 2 . \quad$ So we can take $n_{0}=2$.
" \Leftrightarrow " means "if and only if" i.e. same true/false value

Example : $t(n)=\frac{n(n-1)}{2} . \quad t(n)$ is $\Omega\left(n^{2}\right)$.
Proof (2): \quad Try $c=\frac{1}{3}$

$$
\frac{n(n-1)}{2} \geq \frac{n^{2}}{3}
$$

$$
n \geq 3
$$

So take $n_{0}=3, \quad c=\frac{1}{3}$.

Relationship of Big O and Big Omega (Ω)

Let $f(n)$ and $g(n)$ be two functions of $n \geq 0$.
The following are equivalent statements:

$$
\begin{aligned}
& f(n) \text { is } \mathrm{O}(g(n)) \\
& g(n) \text { is } \Omega(f(n))
\end{aligned}
$$

Why?

$$
f(n)<c g(n) \equiv g(n)>\frac{1}{c} f(n)
$$

Sets of $\Omega($) functions

If $t(n)$ is $\Omega(g(n))$, we often write or say:

$$
t(n) \in \Omega(g(n))
$$

$t(n)$ is a member of the set of functions that are $\Omega(g(n))$.

As with big 0, we have strict subset relationships:

$$
\begin{gathered}
\Omega(1) \supset \Omega\left(\log _{2} n\right) \supset \Omega(n) \supset \Omega\left(n \log _{2} n\right) \\
\supset \Omega\left(n^{2}\right) \ldots \Omega\left(n^{3}\right) \supset \ldots \Omega\left(2^{n}\right) \supset \Omega(n!)
\end{gathered}
$$

Note the biggest set is now $\Omega(1)$. e. g. any positive non-decreasing function $t(n)$ will be bounded below by a constant.

For example, if $t(n)$ belongs to $\Omega(n)$, then $t(n)$ also belongs to $\Omega\left(\log _{2} n\right)$ and to $\Omega(1)$.

We can again talk about tight lower bounds. For example, $\Omega(n)$ is a tight lower bound for $t(n)$ in the example below. i.e. $\Omega(n)$ is the smallest $\Omega()$ set that contains $t(n)$.

Exercises (see PDF)

Q 12: Let $t(n)=\frac{1}{n} . \quad$ Is $t(n) \in \Omega(1)$?
A: No. Apply the definition:
$t(n)$ is $\Omega(1)$ if there exist two constants $n_{0}>0$ and $c>0$ such that, for all $n \geq n_{0}, \quad t(n) \geq c$.

But this is impossible. See below.

Coming up...

Lectures

Fri : April 8	
	big Theta, best and worst cases
Mon Aprill 11 (class cancelled)	
I will try to have OH before final exam.	

Assessments

Assignment 4 due today.

Final Exam Thurs. April 21 (2 weeks)

