COMP 250

Lecture 36

sets of O() functions rules for big O

big Omega Ω

April 6, 2022

Recall Formal Definition of Big O

Let t(n) and g(n) be two functions, where $n \ge 0$.

We say t(n) is O(g(n)) if there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

 $t(n) \leq c g(n).$

We use functions g(n) below.

<u>Note:</u> The following inequalities hold for *n* sufficiently large:

$$1 < \log_2 n < n < n \log_2 n < n^2 < n^3 < \dots < 2^n < n!$$

$$n \ge 3 \qquad n \ge 3 \qquad n \ge 4$$

Thus, we can write big O relationships between them, e.g. n is $O(n \log_2 n)$

Sets of O() functions

If t(n) is O(g(n)), we often write

 $t(n) \in O(g(n)).$

We say:

"t(n) is a member of the set of functions that are O(g(n))."

Thus we have the following *strict* subset relationships:

$$O(1) \subset O(\log_2 n) \subset O(n) \subset O(n \log_2 n) \subset O(n^2)$$

$$\dots \subset O(n^3) \subset \dots \subset O(2^n) \subset O(n!)$$

Tight Bounds

When we say "t(n) is O(g(n))", typically we mean the *smallest set* that t(n) belongs to, i.e. *tight bounds*.

Tight Bounds

When we say "t(n) is O(g(n))", typically we mean the *smallest set* that t(n) belongs to, i.e. *tight bounds*.

For example, if t(n) = 5n + 7, then the tight bound is O(n) rather than $O(n \log_2 n)$ or something even larger.

If we have some function t(n) that is defined by a complicated expression, we would like to say "t(n) is O(g(n))" where g(n) is a simple function.

e.g.
$$t(n) = 5 n \log_2 (n+3) + 17n + 4$$
 is $O(n \log_2 n)$.

What are the general rules to justify using a simple function ?

Scaling Rule

Suppose f(n) is O(g(n)) and let a > 0.

Then a f(n) is also O(g(n)).

So, multiplying a function by a scale factor doesn't change the big O set(s) that it belongs to.

If you understand the definition of big O, then this rule is obvious. Let's prove it anyhow.

Scaling Rule

By definition, if f(n) is O(g(n)) then there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

 $f(n) \leq c g(n).$

Thus... ?

Scaling Rule

By definition, if f(n) is O(g(n)) then there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

 $f(n) \le c g(n)$

or equivalently, $a f(n) \leq a c g(n)$ where a > 0.

This constant a c satisfies the definition that a f(n) is O(g(n)).

Sum Rule

Motivation: When terms are added, we only need to consider the term with the largest big O bound.

For example,

Sum Rule

Suppose $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$.

Then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$.

Proof: There are constants n_1, c_1 and n_2, c_2 such that

 $f_1(n) \leq c_1 g_1(n) \text{ for all } n \geq n_1$ $f_2(n) \leq c_2 g_2(n) \text{ for all } n \geq n_2.$ Thus, $f_1(n) + f_2(n) \leq (c_1 + c_2) \max(g_1(n), g_2(n))$

for all $n \ge \max(n_1, n_2)$

Product Rule

We want to be able to say, for example,

$$t(n) = (3 + 5n) \log_2(n + 7)$$
 is $O(n \log_2 n)$.
 $\uparrow \qquad \uparrow \qquad \uparrow \qquad 0(n) \qquad O(\log_2 n)$

i.e. if two functions are multiplied together, then the O() of their product is the product of their O()'s.

Product Rule

Suppose $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$.

Then $f_1(n) * f_2(n)$ is $0(g_1(n) * g_2(n))$.

Proof: Let n_1, c_1 and n_2, c_2 be constants such that

 $f_1(n) \leq c_1 g_1(n), \text{ for all } n \geq n_1$ $f_2(n) \leq c_2 g_2(n), \text{ for all } n \geq n_2.$

So, $f_1(n) * f_2(n) \le c_1 c_2 g_1(n) g_2(n)$ for all $n \ge \max(n_1, n_2)$ It is because of these rules that we can say, for example:

 $t(n) = 5 n \log_2 (n+3) + 17n + 4$ is $O(n \log_2 n)$.

COMP 250

Lecture 36

sets of O() functions rules for big O

big Omega Ω

April 6, 2022

"small omega" ω

"big omega" Ω

Big Omega (Ω): asymptotic lower bound

Sometimes we want to say that an algorithm takes *at least* a certain time to run, as a function of the input size *n*.

Example 1:

Let t(n) be the time it takes for algorithm X to *find the* maximum value in an array of n numbers. Then t(n) is $\Omega(n)$. (This should be intuitively obvious.)

Big Omega (Ω): asymptotic lower bound

Example 2: (Comparison based sorting)

Let t(n) be the number of element comparisons used by some algorithm (X) to sort an array of n numbers.

One can prove* that t(n) is $\Omega(n \log_2 n)$

That is, no faster comparison-based sorting algorithm is possible than the ones we have seen (e.g. X = merge/heap/quicksort).

*[Updated after lecture: Strictly speaking, this is a statement about on average case. You will cover this in COMP 251.]

Plot of $n \log_2 n$ vs. n

Towards a Formal Definition of Big Ω

Let t(n) and g(n) be two functions, where $n \ge 0$. We say t(n) is **asymptotically bounded below** by g(n) if there exist a constant n_0 such that, for all $n \ge n_0$,

$$t(n) \geq g(n).$$

Note that g(n) here might not be a simple function.

Formal Definition of Big Omega (Ω)

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Omega(g(n))$ if there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

 $t(n) \geq c g(n).$

As with big O, having a constant c lets g(n) be a simple function.

Example:
$$t(n) = \frac{n(n-1)}{2}$$
. $t(n)$ is $\Omega(n^2)$.

Proof: How to choose c ?

$$\frac{n(n-1)}{2} \ge cn^2 ?$$

Example: $t(n) = \frac{n(n-1)}{2}$. t(n) is $\Omega(n^2)$.

Proof: Try $c = \frac{1}{4}$.

$$\frac{n(n-1)}{2} \ge \frac{n^2}{4}$$

Heads up! This inequality may be either true or false, depending on *n*.

$$\Leftrightarrow \qquad 2n(n-1) \ge n^2$$

 $\iff n^2 \ge 2n$

 \Leftrightarrow $n \ge 2$. So we can take $n_0 = 2$.

" \Leftrightarrow " means "if and only if" i.e. same true/false value

Example:
$$t(n) = \frac{n(n-1)}{2}$$
. $t(n)$ is $\Omega(n^2)$.

Proof (2): Try $c = \frac{1}{3}$

$$\frac{n(n-1)}{2} \ge \frac{n^2}{3}$$

 \Leftrightarrow : \leftarrow you can fill this in

 $\iff n \ge 3$

So take $n_0 = 3$, $c = \frac{1}{3}$.

Relationship of Big O and Big Omega (Ω)

Let f(n) and g(n) be two functions of $n \ge 0$.

The following are equivalent statements:

f(n) is O(g(n))g(n) is $\Omega(f(n))$.

Why?

$$f(n) < c g(n) \equiv g(n) > \frac{1}{c} f(n)$$

Sets of $\Omega()$ functions

If t(n) is $\Omega(g(n))$, we often write or say:

 $t(n) \in \Omega(g(n)).$

t(n) is a member of the set of functions that are $\Omega(g(n))$.

As with big O, we have strict subset relationships :

$$\Omega(1) \supset \Omega(\log_2 n) \supset \Omega(n) \supset \Omega(n \log_2 n)$$
$$\supset \Omega(n^2) \dots \supset \Omega(n^3) \supset \dots \quad \Omega(2^n) \supset \Omega(n!)$$

Note the biggest set is now $\Omega(1)$. *e.g.* any positive non-decreasing function t(n) will be bounded below by a constant.

For example, if t(n) belongs to $\Omega(n)$, then t(n) also belongs to $\Omega(log_2n)$ and to $\Omega(1)$.

We can again talk about **tight lower bounds**. For example, $\Omega(n)$ is a tight lower bound for t(n) in the example below. i.e. $\Omega(n)$ is the smallest $\Omega()$ set that contains t(n).

Exercises (see PDF)

Q 12: Let $t(n) = \frac{1}{n}$. Is $t(n) \in \Omega(1)$?

A: No. Apply the definition: t(n) is $\Omega(1)$ if there exist two constants $n_0 > 0$ and c > 0such that, for all $n \ge n_0$, $t(n) \ge c$. But this is impossible. See below.

$$t(n) = \frac{1}{n}$$

n

Coming up...

Lectures

Fri: April 8

big Theta, best and worst cases

Mon Aprill 11 (class cancelled)

I will try to have OH before final exam.

Assessments

Assignment 4 due today.

Final Exam Thurs. April 21 (2 weeks)