COMP 250

Lecture 35

big 0

April 4, 2022

Recall Calculus 1: Limit of a continuous function

Limit of a sequence

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{1+n}=0 \\
& \lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}+n-5}=2
\end{aligned}
$$

What is a "limit" of a sequence ?

Informal definition:

A sequence $t(n)$ has a limit t_{∞} if $t(n)$ becomes arbitrarily close to t_{∞} as $n \rightarrow \infty$.

Formal definition: (ASIDE)
A sequence $t(n)$ has a limit t_{∞} if, for any $\varepsilon>0$, there exists an n_{0} such that for any $n \geq n_{0}$,

$$
\left|t(n)-t_{\infty}\right|<\varepsilon
$$

Informal definition of big O

Let $t(n)$ be a function that describes the time or number of steps for some algorithm to run for an input size n.

Let $g(n)$ be some other function that we compare $t(n)$ to.
$g(n)$ is typically a simple function such as $\log _{2} n, n$, $n^{2}, \ldots, 2^{n}$, etc.

We say informally that $\boldsymbol{t}(\boldsymbol{n})$ is $\mathbf{O}(\boldsymbol{g}(\boldsymbol{n})$) if $g(n)$ is the dominant term in $t(n)$, as n becomes large i.e. asymptotic behavior.

Towards a Formal Definition of Big O

Let $t(n)$ and $g(n)$ be two functions, where $n \geq 0$.
We say $t(n)$ is asymptotically bounded above by $g(n)$
if there exist a constant n_{0} such that, for all $n \geq n_{0}$,

$$
t(n) \leq g(n)
$$

This is not yet a formal definition of big O.

How to visualize?

"... there exists n_{0} such that, for all $n \geq n_{0}, t(n) \leq g(n) "$

Example

We say $t(n)$ is asymptotically bounded above by $g(n)$ if there exist a constant n_{0} such that, for all $n \geq n_{0}, t(n) \leq g(n)$.

Claim: $5 n+70$ is asymptotically bounded above by $6 n$.

Proof:
(State definition) We want to show there exists an n_{0} such that, for all $n \geq n_{0}, \quad 5 n+70 \leq 6 n$.

Claim: $5 n+70$ is asymptotically bounded above by $6 n$.

Proof:
(State definition) We want to show there exists an n_{0} such that, for all $n \geq n_{0}, \quad 5 n+70 \leq 6 n$.

$$
\begin{array}{r}
5 n+70 \leq 6 n \\
70 \leq n
\end{array}
$$

So we could use $n_{0}=70$.

Symbol " \Leftrightarrow " means "if and only if" i.e. logical equivalence

The formal definition of big O is similar to the definition "asymptotically bounded above by" that we just saw.

The formal definition of big O allows us to compare the function $t(n)$ with simpler functions, $g(n)$, such as $\log _{2} n, n, n^{2}, \ldots, 2^{n}$, etc.

Formal Definition of Big O

Let $t(n)$ and $g(n)$ be two functions, where $n \geq 0$.
$t(n)$ is $O(g(n))$ if there exist two positive constants
n_{0} and c such that, for all $n \geq n_{0}$,

$$
t(n) \leq c g(n)
$$

$g(n)$ typically will be a simple function, but this is not required in the definition.

Claim: $\quad 5 n+70$ is $O(n)$.

Claim: $\quad 5 n+70$ is $O(n)$.

Proof 1:

$$
5 n+70 \leq ?
$$

We say $t(n)$ is $O(g(n))$ if there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}$,

$$
t(n) \leq c g(n) .
$$

Claim: $\quad 5 n+70$ is $O(n)$.

Proof 1:

$5 n+70 \leq 5 n+70 n$, if $n \geq 1$

We say $t(n)$ is $O(g(n))$ if there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}$,

$$
t(n) \leq c g(n) .
$$

Claim: $\quad 5 n+70$ is $O(n)$.

Proof 1:

$$
\begin{aligned}
5 n+70 & \leq 5 n+70 n, \\
& \text { if } n \geq 1 \\
& \underset{\uparrow}{75 n}
\end{aligned}
$$

We say $t(n)$ is $O(g(n))$ if there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}$,

$$
t(n) \leq c g(n) .
$$

Claim: $\quad 5 n+70$ is $O(n)$.

Proof 2:

$$
5 n+70 \leq \quad ?
$$

We can come up with a tighter bound for c by using a larger n_{0}.

Claim: $\quad 5 n+70$ is $O(n)$.

Proof 2:

$5 n+\mathbf{7 0} \leq 5 n+\mathbf{6 n}, \quad$ if $n \geq 12$

Claim: $\quad 5 n+70$ is $O(n)$.

Proof 2:

$$
\begin{aligned}
5 n+70 & \leq 5 n+6 n, \quad \text { if } n \geq 12 \\
& =11 n
\end{aligned}
$$

So take $c=11, \quad n_{0}=12$.

We say $t(n)$ is $O(g(n))$ if there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}, \quad t(n) \leq c g(n)$.

Claim: $\quad 5 n+70$ is $O(n)$.

Proof 3:

$$
5 n+70 \leq \quad ?
$$

We can come up with a tighter bound for c by using a larger n_{0}.

Claim: $\quad 5 n+70$ is $O(n)$.

Proof 3:

$$
5 n+70 \leq 5 n+n, \quad n \geq 70
$$

Claim: $\quad 5 n+70$ is $O(n)$.

Proof 3:

$$
\begin{aligned}
5 n+70 & \leq 5 n+n, \quad n \geq 70 \\
& =6 n
\end{aligned}
$$

So take $c=6, \quad n_{0}=70$.

We say $t(n)$ is $O(g(n))$ if there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}, \quad t(n) \leq c g(n)$.

$$
n_{0}=12
$$

So, different combinations of n and c will satisfy the definition that $t(n)$ is $\mathrm{O}(g(n))$.

Claim: $8 n^{2}-17 n+46$ is $O\left(n^{2}\right)$.
Proof (1):

$$
8 n^{2}-17 n+46
$$

We want to bound this by $\mathrm{c} n^{2}$ for some c .

Claim: $8 n^{2}-17 n+46$ is $O\left(n^{2}\right)$.
Proof (1):

$$
\begin{aligned}
& 8 n^{2}-17 n+46 \\
\leq & 8 n^{2}+46 n^{2}, \quad n \geq 1
\end{aligned}
$$

Claim: $8 n^{2}-17 n+46$ is $O\left(n^{2}\right)$.
Proof (1):

$$
\begin{aligned}
& 8 n^{2}-17 n+46 \\
\leq & 8 n^{2}+46 n^{2}, \quad n \geq 1 \\
\leq & 54 n^{2}
\end{aligned}
$$

So take $c=54, \quad n_{0}=1$.

Claim: $8 n^{2}-17 n+46$ is $O\left(n^{2}\right)$.
Proof (2):

$$
8 n^{2}-17 n+46
$$

Can we bound this by c n^{2} for some smaller c ?

Claim: $8 n^{2}-17 n+46$ is $O\left(n^{2}\right)$.
Proof (2):

$$
\begin{aligned}
& 8 n^{2}-17 n+46 \\
\leq & 8 n^{2}, \\
& n \geq 3 \\
& \quad \text { i.e. }-17 * 3+46<0
\end{aligned}
$$

So take $c=8, \quad n_{0}=3$.

What does $O(1)$ mean?

$t(n)$ is $O(1)$ if there exist two positive constants n_{0} and c such that, for all $n \geq n_{0}$,

$$
t(n) \leq c
$$

So it just implies that $t(n)$ is bounded.

Note: we assume $t(n)$ is defined only on $n \geq 0$.

We don't write $O(3 n), O\left(5 \log _{2} n\right)$, etc.

Instead, write $O(n), O\left(\log _{2} n\right)$, etc.
Why? The point of the formal definition of big O is that it allows you to avoid dealing with these constant factors.

"Tight Bounds"

Big O is about upper bounds.

If $t(n)$ is $O(n)$, then is $t(n)$ also $O\left(n^{2}\right)$?

According to the formal definition, yes, since $n<n^{2}$.

When we ask for "tight bounds" on $t(n)$, we want the simple function $\mathrm{g}(n)$ with the smallest growth rate.
(More on this next lecture.)

Incorrect Proofs

In MATH 240 (for CS) or MATH 235 (for Math/CS), you will learn how to write proofs.

Here are some typical mistakes that one might make.

Claim: $\quad 5 n+70$ is $O(n)$.

Incorrect Proof:

$5 n+70$	$\leq \quad c n$
$5 n+70 n$	$\leq \quad c n, \quad n \geq 1$
$75 n$	$\leq \quad c n$
Thus, $\quad c=75$,	$n_{0}=1$

Q: Why is this proof incorrect?
A: Because we don't know how lines are logically related.

Another Example of an Incorrect Proof

Claim: for all $n>0, \quad 2 n^{2} \leq(n+1)^{2}$.

Proof:

$$
\begin{aligned}
2 n^{2} & \leq(n+1)^{2} \\
& \leq(n+n)^{2}, \quad \text { when } n>0 \\
& =4 n^{2}
\end{aligned}
$$

Since $2 n^{2} \leq 4 n^{2}$, we are done.

Unfortunately, the claim is false! (Take $n=3$)

Claim: for all $n>0, \quad 2 n^{2} \leq(n+1)^{2}$.

Proof:
It is incorrect to assume what you are trying to prove.

$$
\begin{aligned}
2 n^{2} & \leq(n+1)^{2} \\
& \leq(n+n)^{2}, \quad \text { when } n>0 \\
& =4 n^{2}
\end{aligned}
$$

Since $2 n^{2} \leq 4 n^{2}$, we are done.

Coming up...

Lectures

Wed : April 6
big Omega, big Theta
best and worst cases

Assessments

Quiz 5 today.

Assignment 4 due Wed. April 6.

