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COMP 250

Lecture 35

big O

April 4, 2022



Recall Calculus 1:
Limit of a continuous function

2



Limit of a sequence
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lim
𝑛→∞

1

1 + 𝑛
= 0

lim
𝑛→∞

2𝑛2

𝑛2 + 𝑛 − 5
= 2



What is a “limit” of a sequence ?

Informal definition:        

A sequence  𝑡(𝑛) has a limit  𝑡∞ if 𝑡(𝑛) becomes
arbitrarily close to  𝑡∞ as 𝑛 → ∞.     

Formal definition :   (ASIDE)

A sequence  𝑡(𝑛) has a limit  𝑡∞ if,  for any 𝜀 > 0,
there exists an 𝑛0 such that  for any  𝑛 ≥ 𝑛0,   

| 𝑡 𝑛 − 𝑡∞ | < 𝜀.
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Informal definition of big O

Let  𝑡 𝑛 be a function that describes the time or number of 
steps for some algorithm to run for an input size 𝑛.

Let 𝑔 𝑛 be some other function that we compare 𝑡 𝑛 to. 

𝑔 𝑛 is typically a simple function such as   𝑙𝑜𝑔2𝑛, 𝑛,

𝑛2, … , 2𝑛, ,  etc.,, 

We say informally that  𝒕 𝒏 is  O(𝒈 𝒏 ) if 𝑔 𝑛 is the dominant 
term in 𝑡 𝑛 , as 𝑛 becomes large  i.e.  asymptotic behavior.
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Towards a Formal Definition of Big O

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions, where 𝑛 ≥ 0.

We  say  𝑡 𝑛 is asymptotically bounded above by 𝑔 𝑛

if there exist a constant 𝑛0 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑔 𝑛 .

This is not yet a formal definition of big O.
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𝑔 𝑛

𝑡 𝑛

𝑛
𝑛0 7

How to visualize ?

“… there exists 𝑛0 such that,   for all 𝑛 ≥ 𝑛0 ,  𝑡 𝑛 ≤ 𝑔 𝑛 “   



𝑔 𝑛 = 6𝑛

𝑡 𝑛 = 5𝑛 + 70

𝑛
𝑛0

Example
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We  say  𝑡 𝑛 is asymptotically bounded above by 𝑔 𝑛 if there 
exist a constant 𝑛0 such that,   for all 𝑛 ≥ 𝑛0,   𝑡 𝑛 ≤ 𝑔 𝑛 .



Claim:    5𝑛 + 70 is asymptotically bounded above by 6𝑛.

Proof:    

(State definition)    We want to show there exists an 𝑛0 such that,   
for all 𝑛 ≥ 𝑛0 ,     5𝑛 + 70 ≤ 6𝑛.
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6𝑛

5𝑛 + 70

𝑛
𝑛0



Claim:    5𝑛 + 70 is asymptotically bounded above by 6𝑛.

Proof:    

(State definition)    We want to show there exists an 𝑛0 such that,   
for all 𝑛 ≥ 𝑛0 ,     5𝑛 + 70 ≤ 6𝑛.

5𝑛 + 70 ≤ 6𝑛
⟺ 70 ≤ 𝑛

So we could use  𝑛0 = 70.

Symbol  “⟺ " means “if and only if”  i.e.  logical equivalence
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The formal definition of big O is similar to the definition  
“asymptotically bounded above by” that we just saw.    

The formal definition of big O allows us to compare the 
function 𝑡 𝑛 with simpler functions ,  g(𝑛), such as  

𝑙𝑜𝑔2𝑛, 𝑛, 𝑛2, … , 2𝑛, ,  etc.,, 



Formal Definition of Big O

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions, where 𝑛 ≥ 0.

𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive constants  

𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .

𝑔 𝑛 typically will be a simple function, but this is not 
required in the definition.
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𝑛

5𝑛 + 70

𝑛
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof  1:

5 𝑛 + 70 ≤ ?
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We  say  𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive constants  

𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof  1:

5 𝑛 + 70 ≤ 5 𝑛 + 70𝑛, if 𝑛 ≥ 1
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We  say  𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive constants  

𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof  1:

5 𝑛 + 70 ≤ 5 𝑛 + 70𝑛, if 𝑛 ≥ 1

= 75 𝑛
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We  say  𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive constants  

𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .

𝑛0

𝑐



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 2:

5 𝑛 + 70 ≤ ?
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We can come up with a tighter bound for 𝑐 by using a larger 𝑛0.



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 2:

5 𝑛 + 𝟕𝟎 ≤ 5 𝑛 + 𝟔𝒏, if 𝑛 ≥ 12
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 2:

5 𝑛 + 70 ≤ 5 𝑛 + 6𝑛, if 𝑛 ≥ 12

= 11 𝑛

So take 𝑐 = 11, 𝑛0 = 12.
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We  say  𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive constants  

𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,       𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 3:

5 𝑛 + 70 ≤ ?
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We can come up with a tighter bound for 𝑐 by using a 
larger 𝑛0.



Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 3:

5 𝑛 + 70 ≤ 5 𝑛 + 𝑛, 𝑛 ≥ 70
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Proof 3:

5 𝑛 + 70 ≤ 5 𝑛 + 𝑛, 𝑛 ≥ 70

= 6 𝑛

So take 𝑐 = 6, 𝑛0 = 70.
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We  say  𝑡 𝑛 is  𝑂( 𝑔 𝑛 ) if there exist two positive constants  

𝑛0 and 𝑐 such that,   for all 𝑛 ≥ 𝑛0 ,       𝑡 𝑛 ≤ 𝑐 𝑔 𝑛 .



5𝑛 + 70

𝑛
𝑛0 = 12

11𝑛
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75 𝑛
5𝑛 + 70

𝑛
𝑛0 = 1

6𝑛
5𝑛 + 70

𝑛
𝑛0 = 70

So,  different combinations of 
𝑛 and 𝑐 will satisfy the 
definition that 𝑡 𝑛 is O(𝑔 𝑛 ).   
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (1):     

8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 17 𝑛2, 𝑛 ≥ 1

≤ 25 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.

We want  to bound this by  c 𝑛2 for some c. 
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (1):     

8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 46 𝑛2, 𝑛 ≥ 1

≤ 25 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (1):     

8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 46 𝑛2, 𝑛 ≥ 1

≤ 54 𝑛2

So take 𝑐 = 54, 𝑛0 = 1.
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (2):     

8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 + 17 𝑛2, 𝑛 ≥ 1

≤ 25 𝑛2

So take 𝑐 = 25, 𝑛0 = 1.

Can we bound this by  c 𝑛2 for some smaller c? 
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Claim:  8 𝑛2 − 17𝑛 + 46 is  𝑂 𝑛2 .

Proof (2):     

8 𝑛2 − 17𝑛 + 46

≤ 8 𝑛2 , 𝑛 ≥ 3

So take 𝑐 = 8, 𝑛0 = 3.

i.e.   −17 ∗ 3 + 46 < 0



What does  𝑂( 1 ) mean?

𝑡 𝑛 is  𝑂 1 if there exist two positive constants  𝑛0 and 𝑐

such that,   for all 𝑛 ≥ 𝑛0 ,

𝑡 𝑛 ≤ 𝑐.

So it just implies that 𝑡 𝑛 is bounded.

Note:  we assume  𝑡(𝑛) is defined only on 𝑛 ≥ 0.
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We don’t write    𝑂 3𝑛 , 𝑂( 5 𝑙𝑜𝑔2𝑛 ),   etc.

Instead,  write   𝑂 𝑛 , 𝑂(𝑙𝑜𝑔2𝑛 ),   etc.

Why?   The point of the formal definition of  big O is that it 
allows you to avoid dealing with these constant factors.



“Tight Bounds”

Big O is about upper bounds.   

If 𝑡(𝑛) is 𝑂 𝑛 , then is  𝑡(𝑛) also 𝑂 𝑛2 ?

According to the formal definition,   yes,  since 𝑛 < 𝑛2.

When we ask for “tight bounds” on 𝑡(𝑛),   we want the simple 
function  g(𝑛) with the smallest growth rate.

(More on this next lecture.)
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Incorrect Proofs

In MATH 240 (for CS) or MATH 235 (for Math/CS),   you will 
learn how to write proofs.

Here are some typical mistakes that one might make.
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Claim:     5 𝑛 + 70   is   𝑂 𝑛 .

Incorrect  Proof:

Q:   Why is this proof incorrect ? 
A:  Because we don’t know how lines are logically related.   

=



Another Example of an Incorrect Proof 

Claim:      for all 𝑛 > 0,     2𝑛2 ≤ (𝑛 + 1) 2 .

Proof:

2𝑛2 ≤ (𝑛 + 1)2

≤ (𝑛 + 𝑛)2 ,     when 𝑛 > 0

= 4 𝑛2

Since  2𝑛2 ≤ 4 𝑛2 , we are done.
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Unfortunately,  the claim is false!    (Take 𝑛 = 3)

Claim:      for all 𝑛 > 0,     2𝑛2 ≤ (𝑛 + 1) 2 .

Proof:

2𝑛2 ≤ (𝑛 + 1)2

≤ (𝑛 + 𝑛)2 ,     when 𝑛 > 0

= 4 𝑛2

Since  2𝑛2 ≤ 4 𝑛2 , we are done.
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It is incorrect to assume what you are trying to prove.



Coming up…

Lectures

Wed  :    April 6

big Omega, big Theta

Fri :    April 8

best and worst cases 

Assessments

Quiz 5 today.

Assignment 4 due Wed. April 6.
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