COMP 250

Lecture 33
recurrences 1

March. 30, 2022

What's left to do ?

- Lecture 33, 34 : Recurrences
- Lecture 35, 36, 37: Asymptotic Complexity

Let $t(n)$ be the time or number of instructions to execute an algorithm.

We have discussed how to determine $t(n)$ when our algorithms only have loops.

Let's briefly review a few examples...

Grade School Addition

$$
\begin{aligned}
& \text { carry }=0 \\
& \text { for } i=0 \text { to } N-1 \text { do } \\
& \begin{array}{l}
\text { sum } \leftarrow a[i]+b[i]+\text { carry } \\
r[i] \\
\text { carry }
\end{array} \leftarrow \text { sum } \% 10 \begin{array}{l}
\text { sum } / 10
\end{array} \quad c_{2} N \\
& \text { end for } \\
& r[N] \leftarrow \text { carry } \\
& c_{3}
\end{aligned}
$$

The number of steps is $t(N)=\left(c_{1}+c_{3}\right)+c_{2} * N$.
When we analyze algorithms with $O()$, we ignore the constants.

Grade School Multiplication

end for
N carry $\leftarrow 0$
for $i=0$ to $N-1$ do $\left.\begin{array}{l}\operatorname{prod} \leftarrow(a[i] * b[j]+\text { carry }) \\ \text { table }[j][i+j] \leftarrow \operatorname{prod} \% 10\end{array}\right]$ N^{2} carry $\leftarrow \operatorname{prod} / 10$
end for
table $[j][N+j] \leftarrow$ carryN
carry $\leftarrow 0$
1
for $i=0$ to $2 * N-1$ do sum \leftarrow carry N
for $j=0$ to $N-1$ do sum \leftarrow sum + table $[j][i]$ N^{2}
end for
$r[i] \leftarrow \operatorname{sum} \% 10$
carry \leftarrow sum $/ 10$
end for

Similarly, we could include constant factors for each of these terms.

The number of steps is $t(N)=c_{0}+c_{1} N+c_{2} * N^{2}$.

Selection Sort

```
for i=0 to N-2{
    index = i
    minValue = list[i ]
    for k=i+1 to N-1 { // nested loop
        if ( list[k] < minValue ){
        minValue = list[k]
        index = k
    }
    }
    if ( index != i )
        list.swap(i, index )
}
```

The number of steps is $t(N)=c_{0}+c_{1} N+c_{2} * N^{2}$.

Let $t(n)$ be the time or number of instructions to execute an algorithm.

We have discussed how to determine $t(n)$ when our algorithms only have loops.

Q: How do we determine $t(n)$ for recursive algorithms?

A: We use recurrence relations.

Recurrence Relation

A recurrence relation is an equation that defines a sequence of numbers whose n-th term depends on previous terms.

$$
\text { e.g. Fibonacci } \quad F(n)=F(n-1)+F(n-2)
$$

We will consider recurrence relations for time complexity $t(n)$ e.g. the number of steps to execute a recursive algorithm as a function of the input size n.

The recurrence expresses $t(n)$ in terms of a smaller input size.

Example 1: Suppose a list has n elements.

What is $t(n)$ for reversing the list as follows ?

```
reverse( list ){
    if list.size > 1 {
            firstElement = list.removeFirst()
            reverse( list )
            list.addLast( firstElement )
    }
}
```


Example 1: Suppose a list has n elements.

What is $t(n)$ for reversing the list as follows ?

If a linked list is used, then it is constant time for both removeFirst() and addLast(). But if an arraylist were used, then removeFirst() would not be constant time.

$$
t(n)=c+t(n-1)
$$

Solving a recurrence using "back substitution"

$$
t(n)=c+t(n-1)
$$

Solving a recurrence using back substitution

$$
\begin{aligned}
t(n) & =c+t(n-1) \\
& =c+c+t(n-2)
\end{aligned}
$$

Solving a recurrence using back substitution

$$
\begin{aligned}
t(n) & =c+t(n-1) \\
& =c+c+t(n-2) \\
& =c+c+c+t(n-3)
\end{aligned}
$$

Solving a recurrence using back substitution

$$
\begin{aligned}
t(n) & =c+t(n-1) \\
& =c+c+t(n-2) \\
& =c+c+c+t(n-3) \\
& =\cdots \\
& =c(n-1)+t(1)
\end{aligned}
$$

e.g. base case is $n=1$ when reversing a list

Example 2 : Sorting a list

```
sort( list ) {
    if list.size == 1
        return list
    else{
        minElement = list.removeMin()
        sort(list)
        return list.addFirst( minElement )
        }
}
```

What is the recurrence relation?

Example 2 : Sorting a list

sort(list) \{
if list.size == 1 return list
else\{ $\operatorname{minElement}=$ list.removeMin() \longleftarrow Time proportional to n sort(list)
return list.addFirst(minElement)

Depends on list data structure (worst case is proportional to n)
$t(n)=c_{1}+c_{2} n+t(n-1)$

Let's solve the slightly simpler recurrence, by dropping the constant term.

$$
t(n)=c n+t(n-1)
$$

Let's solve the slightly simpler recurrence.

$$
t(n)=c n+t(n-1)
$$

$$
=c n+c \cdot(n-1)+t(n-2)
$$

Let's solve the slightly simpler recurrence. (We are sorting a list. Base case is $n=1$.)
$t(n)=c n+t(n-1) \quad k=0$

$$
=c n+c \cdot(n-1)+t(n-2) \quad k=1
$$

$$
=\ldots
$$

$$
=c\{n+(n-1)+(n-2)+\cdots+(n-k)\}+t(n-k-1)
$$

Let's go all the way to the end, and use a cleaner base case $t(0)$ or $n-k=1$.

Let's solve the slightly simpler recurrence ${ }_{\text {, }}$ and cleaner base case $(\boldsymbol{n}=\mathbf{0})$.

$$
t(n)=c n+t(n-1)
$$

$$
=c n+c \cdot(n-1)+t(n-2)
$$

$$
=\ldots
$$

$$
=c\{n+(n-1)+(n-2)+\cdots+(n-k)\}+t(n-k-1)
$$

$$
=c\{n+(n-1)+(n-2)+\cdots+2+1\}+t(0)
$$

Let's solve the slightly simpler recurrence, and cleaner base case ($n=0$).

$$
t(n)=c n+t(n-1)
$$

$$
=c n+c \cdot(n-1)+t(n-2)
$$

$$
=\ldots
$$

$$
=c\{n+(n-1)+(n-2)+\cdots+(n-k)\}+t(n-k-1)
$$

$$
=c\{n+(n-1)+(n-2)+\cdots+2+1\}+t(0)
$$

$$
=\frac{c n(n+1)}{2}+t(0)
$$

Example 3: Tower of Hanoi

tower(n , start, finish, other)\{ // base case is $\mathrm{n}=\mathbf{1}$, so $t(1)=1$ if $n==1$
move from start to finish
else \{
tower($\mathrm{n}-1$, start, other, finish)
move from start to finish
tower($n-1$, other, finish, start)
\}
\}

Q: How many moves are needed for a tower with n disks ?

$$
t(n)=1+2 t(n-1)
$$

What do you think the solution will be ?

$$
t(n) \sim n^{2} ? \quad n^{3} ? \quad 2^{n} ?
$$

Tower of Hanoi recurrence

$t(n)=1+2 t(n-1)$

Tower of Hanoi recurrence

$$
\begin{aligned}
t(n) & =1+2 t(n-1) \\
& =1+2(1+2 t(n-2))
\end{aligned}
$$

Tower of Hanoi recurrence

$$
\begin{aligned}
t(n) & =1+2 t(n-1) \\
& =1+2(1+2 t(n-2)) \\
& =(1+2)+4 t(n-2)
\end{aligned}
$$

Tower of Hanoi recurrence

$$
\begin{aligned}
t(n) & =1+2 t(n-1) \\
& =1+2(1+2 t(n-2)) \\
& =(1+2)+4 t(n-2) \\
& =(1+2)+4(1+2 t(n-3))
\end{aligned}
$$

Tower of Hanoi recurrence

$$
\begin{aligned}
t(n) & =1+2 t(n-1) \\
& =1+2(1+2 t(n-2)) \\
& =(1+2)+4 t(n-2) \\
& =(1+2)+4(1+2 t(n-3)) \\
& =(1+2+4)+8 t(n-3)
\end{aligned}
$$

Tower of Hanoi recurrence

$$
\begin{array}{rlrl}
t(n) & =1+2 t(n-1) & & k=1 \\
& =1+2(1+2 t(n-2)) & & k=2 \\
& =(1+2)+4 t(n-2) & & \\
& =(1+2)+4(1+2 t(n-3)) & & \\
& =(1+2+4)+8 t(n-3) & & \\
& =\cdots & & \\
& =\left(1+2+4+8+\cdots+2^{k-1}\right)+2^{k} & t(n-k)
\end{array}
$$

Tower of Hanoi recurrence

$$
\begin{aligned}
t(n) & =1+2 t(n-1) \\
& =1+2(1+2 t(n-2)) \\
& =(1+2)+4 t(n-2) \\
& =(1+2)+4(1+2 t(n-3)) \\
& =(1+2+4)+8 t(n-3) \\
& =\cdots \\
& =\left(1+2+4+8+\cdots+2^{k-1}\right)+2^{k} t(n-k) \\
& =\left(1+2+4+8+\cdots+2^{n-2}\right)+2^{n-1} t(1) \quad \text { verify }
\end{aligned}
$$

Tower of Hanoi recurrence

$$
\begin{aligned}
t(n) & =1+2 t(n-1) \\
& =1+2(1+2 t(n-2)) \\
& =(1+2)+4 t(n-2) \\
& =(1+2)+4(1+2 t(n-3)) \\
& =(1+2+4)+8 t(n-3) \\
& =\cdots \\
& =\left(1+2+4+8+\cdots+2^{k-1}\right)+2^{k} t(n-k) \\
& =\left(1+2+4+8+\cdots+2^{n-2}\right)+2^{n-1} t(1) \\
& =\left(2^{n-1}-1\right)+2^{n-1} t(1)
\end{aligned}
$$

Tower of Hanoi recurrence

$$
\begin{aligned}
t(n) & =1+2 t(n-1) \\
& =1+2(1+2 t(n-2)) \\
& =(1+2)+4 t(n-2) \\
& =(1+2)+4(1+2 t(n-3)) \\
& =(1+2+4)+8 t(n-3) \\
& =\cdots \\
& =\left(1+2+4+8+\cdots+2^{k-1}\right)+2^{k} t(n-k) \\
& =\left(1+2+4+8+\cdots+2^{n-2}\right)+2^{n-1} t(1) \\
& =\left(2^{n-1}-1\right)+2^{n-1} t(1) \\
& =2^{n}-1, \text { since } t(1)=1 \longleftarrow \text { Base case for Tower of Hanoi }
\end{aligned}
$$

You should know by now....

$$
1+2+3+\ldots+k=?
$$

$$
1+2+4+8+\ldots+2^{k}=?
$$

$$
1+x+x^{2}+x^{3}+\ldots+x^{k}=?
$$

Example 4: Binary Search

```
binarySearch( list, value, low, high ){ // n = high - low + 1
    if low <= high {
        mid = (low + high) / 2
        if value == list[mid]
            return value
        else if value < list[mid]
            return binarySearch(list, value, low, mid-1)
        else
            return binarySearch(list, value, mid+1, high)
        }
    else
        return -1
}
```

 \(t(n)=c+t\left(\frac{n}{2}\right)\)
 The list sizes might not be be exactly $n / 2$, but will be at most off by 1.

Example 4: Binary Search

```
binarySearch( list, value, low, high ){
// n = high - low + 1
    if low <= high {
        mid = (low + high) / 2
        if value == list[mid]
            return value \longleftarrow Base case : found value
        else if value < list[mid]
            return binarySearch(list, value, low, mid-1)
        else
            return binarySearch(list, value, mid+1, high)
        }
    else
        return -1 « Base case : high < low, t(1) = 1
}
\[
t(n)=c+t\left(\frac{n}{2}\right), \quad n>1
\]
```


Binary search recurrence

$$
t(n)=c+t\left(\frac{n}{2}\right)
$$

Note this doesn't quite capture the situation, since mid is excluded. But close enough!

Binary search recurrence

$$
\begin{aligned}
t(n) & =c+t\left(\frac{n}{2}\right) \\
& =c+c+t\left(\frac{n}{4}\right)
\end{aligned}
$$

Binary search recurrence

$$
\begin{aligned}
t(n) & =c+t\left(\frac{n}{2}\right) \\
& =c+c+t\left(\frac{n}{4}\right) \\
& =c+c+\cdots+t\left(\frac{n}{2^{k}}\right)
\end{aligned}
$$

Binary search recurrence

$$
\begin{aligned}
t(n) & =c+t\left(\frac{n}{2}\right) \quad \begin{array}{c}
\text { For the purpose of solving } \\
\text { the recurrence, we assume } \\
\text { that } n \text { is a power of 2. }
\end{array} \\
& =c+c+t\left(\frac{n}{4}\right) \\
& =c+c+\cdots+t\left(\frac{n}{2^{k}}\right) \\
& =c+c+\cdots+c+t\left(\frac{n}{n}\right) \quad \begin{array}{l}
n=2^{k}
\end{array}
\end{aligned}
$$

Binary search recurrence

$$
\begin{aligned}
t(n) & =c+t\left(\frac{n}{2}\right) \quad \begin{array}{l}
\text { For the purpose of solving } \\
\text { the recurrence, we assume } \\
\text { that } \mathrm{n} \text { is a power of } 2 .
\end{array} \\
& =c+c+t\left(\frac{n}{4}\right) \\
& =c+c+\cdots+t\left(\frac{n}{2^{k}}\right) \\
& =c+c+\cdots+c+t\left(\frac{n}{n}\right) \quad n=2^{k} \\
& =c \log _{2} n+t(1)
\end{aligned}
$$

Today's Recurrences

$$
\begin{aligned}
& t(n)=c+t(n-1) \\
& t(n)=c n+t(n-1) \\
& t(n)=c+2 t(n-1) \\
& t(n)=c+t\left(\frac{n}{2}\right)
\end{aligned}
$$

Coming up...

Lectures

Fri, April 1
more recurrences
Mon, Wed, Fri : April 4, 6, 8
big O, big Theta, big Omega
best and worst cases

Assessments

Quiz 5 is in Mon. April 4

Practice quizzes are available for Quiz 5 and for lectures after that (33-37)

Assignment 4 due Wed. April 6.

