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COMP 250

Lecture 33

recurrences 1

March. 30, 2022



What’s left to do ?

• Lecture 33,  34 :    Recurrences

• Lecture  35, 36, 37:    Asymptotic Complexity
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Let  𝑡 𝑛 be the time or number of instructions to execute an 
algorithm.

We have discussed how to determine 𝑡 𝑛 when our 
algorithms only have loops.  

Let’s briefly review a few examples...



Grade School Addition
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𝑐1

𝑐2𝑁

𝑐3

The number of steps is  𝑡 𝑁 = (𝑐1 + 𝑐3) + 𝑐2 ∗ 𝑁.

When we analyze algorithms with 𝑂 ,  we ignore the constants. 



Grade School Multiplication
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𝑁

𝑁2

𝑁

1

𝑁

𝑁2

𝑁

Similarly,  we could 
include constant factors 
for each of these terms.

Step 2

Step 1

The number of steps is  𝑡 𝑁 = 𝑐0 + 𝑐1 𝑁 + 𝑐2 ∗ 𝑁
2.



Selection Sort

for 𝑖 = 0 to 𝑁 − 2{

index = 𝑖
minValue = list[𝑖 ]     

for k = 𝑖 + 1 to 𝑁 − 1 {        //  nested loop

if ( list[k] < minValue ){
minValue = list[k]
index = k          

}
}
if ( index != 𝑖 ) 

list.swap(𝑖,  index )
}
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~𝑁

~𝑁2/2

~𝑁

The number of steps is  𝑡 𝑁 = 𝑐0 + 𝑐1 𝑁 + 𝑐2 ∗ 𝑁
2.
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Let  𝑡 𝑛 be the time or number of instructions to execute an 
algorithm.

We have discussed how to determine 𝑡 𝑛 when our 
algorithms only have loops.  

Q:   How do we determine  𝑡 𝑛 for recursive algorithms ?

A:    We use recurrence relations.



Recurrence Relation

A recurrence relation is an equation that defines a sequence of 
numbers whose 𝑛-th term depends on previous terms. 

e.g.  Fibonacci 𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹(𝑛 − 2)

We will consider recurrence relations for time complexity 𝑡 𝑛

e.g. the number of steps to execute a recursive algorithm as a 
function of the input size 𝑛.

The recurrence expresses 𝑡 𝑛 in terms of a smaller input size.
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Example 1 :    Suppose a list has 𝑛 elements.

What is 𝑡 𝑛 for reversing the list as follows ? 

reverse( list ){      
if list.size > 1 {          

firstElement =  list.removeFirst( )
reverse( list )
list.addLast( firstElement )  

}
}



𝑡 𝑛 = 𝑐 + 𝑡 𝑛 − 1
10

reverse( list ){      
if list.size > 1 {          

firstElement =  list.removeFirst( )
reverse( list )
list.addLast( firstElement )  

}
}

If a linked list is used, then it is constant time for both 
removeFirst() and addLast().   But if an arraylist were 
used,  then removeFirst() would not be constant time.

Constant time to do the base case check. 

Example 1 :    Suppose a list has 𝑛 elements.

What is 𝑡 𝑛 for reversing the list as follows ? 



Solving a recurrence using  
“back substitution”

which is 𝑂 𝑛 .
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Solving a recurrence using  
back substitution

which is 𝑂 𝑛 .
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Solving a recurrence using  
back substitution

which is 𝑂 𝑛 .
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which is 𝑂 𝑛 .

Solving a recurrence using  
back substitution
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e.g.  base case is 𝑛 = 1
when reversing a list



Example 2 :  Sorting a list

sort( list )  {                           
if list.size == 1

return  list
else{

minElement = list.removeMin()
sort(list)
return list.addFirst( minElement )

}
}
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What is the recurrence relation?



Example 2 :  Sorting a list

𝑡 𝑛 = 𝑐1 + 𝑐2 𝑛 + 𝑡 𝑛 − 1
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Base case 𝑛 = 1.    
(But we do this test everytime.)

sort( list )  {                           
if list.size == 1

return  list
else{

minElement = list.removeMin()
sort(list)
return list.addFirst( minElement )

}
}

Time proportional to 𝑛

Depends on list data structure  (worst case is proportional to 𝑛 )



which is 𝑂 𝑛2 . 17

Let’s solve the slightly simpler recurrence, by dropping the constant term.



which is 𝑂 𝑛2 . 18

Let’s solve the slightly simpler recurrence. 



which is 𝑂 𝑛2 . 19

Let’s go all the way to the end, and use a cleaner base case  𝑡(0) or 𝑛 − 𝑘 = 1.

Let’s solve the slightly simpler recurrence.  (We are sorting a list.  Base case is  𝑛 = 1. ) 

𝑘 = 0

𝑘 = 1



which is 𝑂 𝑛2 . 20

Let’s solve the slightly simpler recurrence,  and cleaner base case  (𝒏 = 𝟎).



which is 𝑂 𝑛2 .
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Let’s solve the slightly simpler recurrence,  and cleaner base case  (𝑛 = 0).



Example 3:   Tower of Hanoi
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tower(n, start, finish, other){ //  base case is n=1,  so  𝑡 1 = 1
if  n == 1 

move from start to finish
else {

tower( n-1, start, other,  finish) 
move from start to finish
tower( n-1, other, finish, start)

}
}         

Q:   How many moves are needed for a tower with 𝑛 disks  ?

𝑡 𝑛 = 1 + 2 𝑡 𝑛 − 1



23

What do you think the solution will be ?

𝑡 𝑛 ~ 𝑛2 ? 𝑛3 ? 2𝑛 ?



Tower of Hanoi recurrence

which is 𝑂 2𝑛 . 24



Tower of Hanoi recurrence

which is 𝑂 2𝑛 . 25



Tower of Hanoi recurrence

which is 𝑂 2𝑛 . 26



Tower of Hanoi recurrence

which is 𝑂 2𝑛 . 27



Tower of Hanoi recurrence

which is 𝑂 2𝑛 . 28



Tower of Hanoi recurrence

which is 𝑂 2𝑛 . 29

𝑘 = 1

𝑘 = 2

𝑘 = 3



Tower of Hanoi recurrence

which is 𝑂 2𝑛 . 30

𝑘 = 𝑛 − 1

verify



Tower of Hanoi recurrence

which is 𝑂 2𝑛 . 31



Tower of Hanoi recurrence
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Base case for Tower of Hanoi



You should know by now….

1 + 2 + 3 + … + 𝑘 = ?

1 + 2 + 4 + 8 + … + 2𝑘 = ?

1 + 𝑥 + 𝑥2 + 𝑥3 + … + 𝑥𝑘 = ?
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binarySearch( list, value, low, high ){ //      𝑛 = high − low + 1
if  low <= high {                         

mid = (low + high) / 2
if value == list[mid]

return value
else   if value < list[mid]

return  binarySearch(list, value,  low,     mid - 1 )
else

return  binarySearch(list, value,  mid+1,  high)
}             

else
return   -1

}

Example 4:   Binary Search
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𝑡 𝑛 = 𝑐 + 𝑡(
𝑛

2
)

The list sizes might not be be 
exactly n/2,  but will be at 
most off by 1.  



binarySearch( list, value, low, high ){          //      𝑛 = high − low + 1
if  low <= high {                         

mid = (low + high) / 2
if value == list[mid]

return value
else   if value < list[mid]

return  binarySearch(list, value,  low,     mid - 1 )
else

return  binarySearch(list, value,  mid+1,  high)
}             

else
return   -1

}

Example 4:   Binary Search
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Base case :  found value 

Base case : high < low,      𝑡 1 = 1

𝑡 𝑛 = 𝑐 + 𝑡
𝑛

2
, 𝑛 > 1



which is 𝑂 𝑙𝑜𝑔2 𝑛 .
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Binary search recurrence 

Note this doesn’t quite capture 
the situation, since mid is 
excluded.   But close enough!



which is 𝑂 𝑙𝑜𝑔2 𝑛 .
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Binary search recurrence 



which is 𝑂 𝑙𝑜𝑔2 𝑛 .
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Binary search recurrence 



which is 𝑂 𝑙𝑜𝑔2 𝑛 .
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Binary search recurrence 

For the purpose of solving 
the recurrence, we assume 
that n is a power of 2. 

𝑛 = 2𝑘



which is 𝑂 𝑙𝑜𝑔2 𝑛 .
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Base case

For the purpose of solving 
the recurrence, we assume 
that n is a power of 2. 

Binary search recurrence 

𝑛 = 2𝑘



𝑡 𝑛 = 𝑐 + 𝑡(
𝑛

2
)

𝑡 𝑛 = 𝑐 + 2 𝑡 𝑛 − 1

𝑡 𝑛 = 𝑐 𝑛 + 𝑡 𝑛 − 1

𝑡 𝑛 = 𝑐 + 𝑡 𝑛 − 1

Today’s  Recurrences
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Coming up…

Lectures

Fri, April 1

more recurrences

Mon, Wed,  Fri :    April 4, 6, 8

big O, big Theta, big Omega

best and worst cases 

Assessments

Quiz 5 is in Mon. April 4

Practice quizzes are available for Quiz 5 
and for lectures after that (33-37) 

Assignment 4 due Wed. April 6.
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