COMP 250

Lecture 32

graph traversal

March. 28, 2022

Today

- Recursive graph traversal
- depth first
- Non-recursive graph traversal
- depth first
- breadth first

(b)

Graph traversal (recursive)

Specify a starting vertex.
Visit all nodes that are "reachable" by a path from a starting vertex. Today we will say "reaching" is the same as "visiting".

Recall: Tree traversal (recursive)

```
depthfirst_Tree (root){
    root.visited = true // "preorder"
        for each child of root
        depthfirst_Tree( child )
    }
}
```


Graph traversal (recursive)

depthfirst_Graph(v)\{
v.visited = true for each w such that (v, w) is in $E / / w$ in v.adjList

\}

Graph traversal (recursive)

depthfirst_Graph(v)\{
v.visited = true for each w such that (v, w) is in $\mathrm{E} / / \mathrm{w}$ in v.adjList if ! (w.visited)
// avoids cycles depthfirst_Graph(w)
\}

Call Stack for depthFirst_Graph(a)

depthFirst_Graph(v)\{
v.visited = true
for each w such that (v, w) is in E
if ! (w.visited)
depthFirst_Graph(w)
\}

Call Stack for depthFirst_Graph(a)

depthFirst_Graph(v)\{
v.visited = true
for each w such that (v, w) is in E
if ! (w.visited) depthFirst_Graph(w)
\}

a a

Call Stack for depthFirst_Graph(a)

depthFirst_Graph(v)\{
v.visited = true
for each w such that (v, w) is in E if ! (w.visited) depthFirst_Graph(w)
\}

Call Stack for depthFirst_Graph(a)

			b
		f	f
	c	c	c
a	a	a	a

depthFirst_Graph(v)\{
v.visited = true
for each w such that (v, w) is in E
if ! (w.visited) depthFirst_Graph(w)
\}

Call Stack for depthFirst_Graph(a)

				b
		f	f	f
	c	c	c	c
a	a	a	a	a

depthFirst_Graph(v)\{
v.visited = true
for each w such that (v, w) is in E
if ! (w.visited) depthFirst_Graph(w)
\}

Call Stack for depthFirst_Graph(a)

"Call Tree" for depthFirst_Graph(a)

root

In a running program, the call stack actually exists but the call tree does not exist. The call tree is only a way to visualize what the recursive calls are.

Graph Connectivity

Unlike tree traversal for rooted tree, a graph traversal started from some arbitrary vertex does not necessarily reach all other vertices.

Knowing which vertices can be reached by a path from some starting vertex is itself an important problem. You will learn about such graph 'connectivity' problems in COMP 251.

Example 2

Adjacency List

$$
\begin{aligned}
& a-(b, d) \\
& b-(a, c, e) \\
& c-(b, f) \\
& d-(a, e, g) \\
& e-(b, d, f, h) \\
& f-(c, e, i) \\
& g-(d, h) \\
& h-(e, g, i) \\
& i-(f, h)
\end{aligned}
$$

Example 2

What is the call tree
for depthFirst_Graph(a) ?
(Do it in your head.)

Example 2

call tree for depthFirst_Graph (a)

Heads up -- Initialization

```
depthfirstWithReset(v){
    for each vertex w in graph // reset vertices
        w.visited = false
    depthfirst_Graph (v){
}
depthfirst_Graph(v){ // helper method
    v.visited = true
    for each w such that (v,w) is in E
        if ! (w.visited)
        depthfirst_Graph(w)
}
```


Heads up - Initialization (Java)

```
class Graph<T> {
    HashMap< String, Vertex<T> > vertexMap;
    class Vertex<T> {
        ArrayList<Vertex> adjList;
        T element;
        boolean visited;
    }
    void resetVisited() {
        for (Vertex<T> v : vertexMap.values() ){
                v.visited = false;
    }
    // Implementation of pseudocode on previous slide
}
```


ASIDE: Graph Traversal Example A3 part 2

Recursive depth first graph traversal and visiting can have many forms, e.g.
solveMazeUtil(char maze[][], boolean found, int x, int y) \{

```
if (solveMazeUtil(maze, found, x + 1, y)) {
        return true;
    } else if (solveMazeUtil(maze, found, x - 1, y)) {
        return true;
    } else if (solveMazeUtil(maze, found, x, y + 1)) {
        return true;
    } else if (solveMazeUtil(maze, found, x, y - 1)) {
        return true;
    } else { // backtrack
```

\}

Today

- Recursive graph traversal
- depth first
- Non-recursive graph traversal
- depth first (using stack)
- breadth first (using queue)

Recall: depth first tree traversal (non-recursive, using stack)

```
treeTraversalUsingStack(root){
    initialize empty stack s
    s.push(root)
    while s is not empty {
            cur = s.pop()
        visit cur
        for each child of cur
                s.push(child)
    }
}
```


Slight variation on depth first tree traversal (using stack)

```
treeTraversalUsingStack(root){
    visit root // visit before push
    initialize empty stack s
    s.push(root)
    while s is not empty {
    cur = s.pop()
    for each child of cur
        visit child // visit at 'same time' as push
        s.push(child)
    }
}
```

We are still visiting each node before its children (but visit order is different).

Depth first graph traversal (using stack)

```
graphTraversalUsingStack( v ){
    visit v // this can be done after push below
    initialize empty stack s
    s.push(v)
    while (s is not empty) {
        u = s.pop()
        for each w in u.adjList{ // new part
            if (!w.visited){
                visit w // these two instruction can be done
                s.push(w) // in either order ('same time')
            }
        } Updated after lecture:
    }
}
                                see Exercises }12\mathrm{ (graphs) Question 6.

Example: graphTraversalUsingStack(a)

(2)

\section*{Example: graphTraversalUsingStack(a)}


The traversal defines a rooted tree, but it is not a "call tree".
(The algorithm is not recursive.)


Example: graphTraversalUsingStack(a)


Example: graphTraversalUsingStack(a)


Example: graphTraversalUsingStack(a)


Example: graphTraversalUsingStack(a)


Example: graphTraversalUsingStack(a)


Example: graphTraversalUsingStack(a)


\section*{Recall: breadth first tree traversal}
for each level i visit all nodes at level i



\section*{Breadth first graph traversal}
```

graphTraversalUsingQueue(v){
visit v
initialize empty queue q
q.enqueue(v)
while (q is not empty) {
u = q.dequeue()
for each w in u.adjList{
if (!w.visited){
visit w // visit at 'same time' as enqueue
q.enqueue(w)
}
}
}
}

```

\section*{Example}

\section*{graphTraversalUsingQueue(c)}

(c)

\section*{Example}

\section*{graphTraversalUsingQueue(c)}

\((C) \rightarrow f\)

\section*{Example}

\section*{graphTraversalUsingQueue(c)}


\section*{Example}

\section*{graphTraversalUsingQueue(c)}


\section*{Example: graphTraversalUsingQueue(a)}


\section*{Example: graphTraversalUsingQueue(a)}


\section*{Example: graphTraversalUsingQueue(a)}


\section*{Example: graphTraversalUsingQueue(a)}



\section*{Example: graphTraversalUsingQueue(a)}



\section*{Example: graphTraversalUsingQueue(a)}

\(|\)\begin{tabular}{l} 
a \\
bd \\
dce \\
ceg \\
egf \\
gfh
\end{tabular}

\section*{Example: graphTraversalUsingQueue(a)}



\section*{Example: graphTraversalUsingQueue(a)}


\section*{Example: graphTraversalUsingQueue(a)}


Traversal defines a tree whose root is the starting vertex.
One can show in general that this traversal first reaches nodes whose shortest path is length 0 , then 1 , then 2 , etc. i.e. breadth first.

\section*{Coming up...}

\section*{Lectures}
Wed \& Fri, March 30 \& April 1
recurrences
Mon, Wed, Fri : April 4, 6, 8
big O, ...

\section*{Assessments}

Quiz 5 is in Mon. April 4

Assignment 4 due Wed. April 6.
```

