
1

COMP 250

Lecture 32

graph traversal

March. 28, 2022

Today
• Recursive graph traversal

• depth first

• Non-recursive graph traversal
• depth first
• breadth first

2

f

g

c

d

a e

b h

Graph traversal (recursive)

Specify a starting vertex.

Visit all nodes that are “reachable” by a path from a starting
vertex. Today we will say “reaching” is the same as “visiting”.

f

g

c

d

a e

b h
3

depthfirst_Tree (root){
root.visited = true // “preorder”
for each child of root

depthfirst_Tree(child)
}

}

Recall: Tree traversal (recursive)

4

depthfirst_Graph(v){
v.visited = true
for each w such that (v,w) is in E // w in v.adjList

_______?___________
}

Graph traversal (recursive)

5

depthfirst_Graph(v){
v.visited = true
for each w such that (v,w) is in E // w in v.adjList

if ! (w.visited) // avoids cycles
depthfirst_Graph(w)

}

Graph traversal (recursive)

6

b e
f f f f f

c c c c c c c
a

f

g

c

d

a e

b h

Call Stack for depthFirst_Graph(a)

7

depthFirst_Graph(v){
v.visited = true
for each w such that (v,w) is in E

if ! (w.visited)
depthFirst_Graph(w)

}

b e
f f f f f

c
a a

f

g

c

d

a e

b h

Call Stack for depthFirst_Graph(a)

8

depthFirst_Graph(v){
v.visited = true
for each w such that (v,w) is in E

if ! (w.visited)
depthFirst_Graph(w)

}

b e
f

c c
a a a

f

g

c

d

a e

b h

Call Stack for depthFirst_Graph(a)

9

depthFirst_Graph(v){
v.visited = true
for each w such that (v,w) is in E

if ! (w.visited)
depthFirst_Graph(w)

}

b e
f f f f f

c c c c c c c
a a a a a a a a a

f

g

c

d

a e

b h

Call Stack for depthFirst_Graph(a)

10

depthFirst_Graph(v){
v.visited = true
for each w such that (v,w) is in E

if ! (w.visited)
depthFirst_Graph(w)

}

b e
f f ff f f

c c c cc c c c
a a a a aa a a a a

f

g

c

d

a e

b h

Call Stack for depthFirst_Graph(a)

11

depthFirst_Graph(v){
v.visited = true
for each w such that (v,w) is in E

if ! (w.visited)
depthFirst_Graph(w)

}

b e
f f f f f

c c c c c c c
a a a a a a a a a

f

g

c

d

a e

b h

Call Stack for depthFirst_Graph(a)

12

depthFirst_Graph(v){
v.visited = true
for each w such that (v,w) is in E

if ! (w.visited)
depthFirst_Graph(w)

}

“Call Tree” for depthFirst_Graph(a)

13

f

g

c

d

a e

b h

root

b e
f f f f f

c c c c c c c
a a a a a a a a a

In a running program,
the call stack actually
exists but the call tree
does not exist. The
call tree is only a way
to visualize what the
recursive calls are.

Graph Connectivity

14

Unlike tree traversal for rooted tree, a graph traversal
started from some arbitrary vertex does not necessarily
reach all other vertices.

Knowing which vertices can be reached by a path from
some starting vertex is itself an important problem. You
will learn about such graph `connectivity’ problems in
COMP 251.

Example 2

15

g

d

a

h

e

b

i

f

c
a - (b,d)
b - (a,c,e)
c - (b,f)
d - (a,e,g)
e - (b,d,f,h)
f - (c,e,i)
g - (d,h)
h - (e,g,i)
i - (f,h)

Adjacency List

Example 2

16

g

d

a

h

e

b

i

f

c
What is the call tree
for depthFirst_Graph(a) ?

(Do it in your head.)

Example 2

17

g

d

a

h

e

b

i

f

c

g

d

a

h

e

b

i

f

c

call tree for depthFirst_Graph (a)

depthfirstWithReset(v){
for each vertex w in graph // reset vertices

w.visited = false
depthfirst_Graph (v){

}

depthfirst_Graph(v){ // helper method
v.visited = true
for each w such that (v,w) is in E

if ! (w.visited)
depthfirst_Graph(w)

}

Heads up -- Initialization

18

class Graph<T> {
HashMap< String, Vertex<T> > vertexMap;

class Vertex<T> {
ArrayList<Vertex> adjList;
T element;
boolean visited;

}

void resetVisited() {
for (Vertex<T> v : vertexMap.values()){

v.visited = false;
}

// Implementation of pseudocode on previous slide
}

Heads up – Initialization (Java)

19

ASIDE: Graph Traversal Example
A3 part 2

20

solveMazeUtil(char maze[][], boolean found, int x, int y) {

:
if (solveMazeUtil(maze, found, x + 1, y)) {

return true;
} else if (solveMazeUtil(maze, found, x - 1, y)) {

return true;
} else if (solveMazeUtil(maze, found, x, y + 1)) {

return true;
} else if (solveMazeUtil(maze, found, x, y - 1)) {

return true;
} else { // backtrack

:
}

Recursive depth first graph traversal and visiting can have
many forms, e.g.

Today
• Recursive graph traversal

• depth first

• Non-recursive graph traversal
• depth first (using stack)
• breadth first (using queue)

21

Recall: depth first tree traversal
(non-recursive, using stack)

22

treeTraversalUsingStack(root){
initialize empty stack s
s.push(root)
while s is not empty {

cur = s.pop()
visit cur
for each child of cur

s.push(child)
}

}

Slight variation on
depth first tree traversal (using stack)

23

treeTraversalUsingStack(root){
visit root // visit before push
initialize empty stack s
s.push(root)
while s is not empty {

cur = s.pop()
for each child of cur

visit child // visit at ‘same time’ as push
s.push(child)

}
}

We are still visiting each node before its children (but visit order is
different).

Depth first graph traversal (using stack)

24

graphTraversalUsingStack(v){
visit v // this can be done after push below
initialize empty stack s
s.push(v)
while (s is not empty) {

u = s.pop()
for each w in u.adjList{ // new part

if (!w.visited){
visit w // these two instruction can be done
s.push(w) // in either order (‘same time’)

}
}

}
}

Updated after lecture:
see Exercises 12 (graphs) Question 6.

Example: graphTraversalUsingStack(a)

25

a

g

d

a

h

e

b

i

f

c

a

Example: graphTraversalUsingStack(a)

26

d

a b

g

d

a

h

e

b

i

f

c

d
a b ‘a’ was popped. ‘b’ and ‘d’ were pushed.

The traversal defines a
rooted tree, but it is not
a “call tree”.
(The algorithm is not
recursive.)

Example: graphTraversalUsingStack(a)

27

g

d

a

e

b

g

d

a

h

e

b

i

f

c

g
d e ‘d’ was popped. ‘e’ and ‘g’ were pushed.

a b b

Example: graphTraversalUsingStack(a)

28

g

d

a

e

b

g

d

a

h

e

b

i

f

c

g h
d e e ‘g’ was popped. ‘h’ was pushed.

a b b b

h

Example: graphTraversalUsingStack(a)

29

g

d

a

e

b

g

d

a

h

e

b

i

f

c

g h i
d e e e ‘h’ was popped. ‘i’ was pushed.

a b b b b

h i

Example: graphTraversalUsingStack(a)

30

g

d

a

e

b

g

d

a

h

e

b

i

f

c

g h i f
d e e e e ‘i’ was popped. ‘f’ was pushed.

a b b b b b

h i

f

Example: graphTraversalUsingStack(a)

31

g

d

a

e

b

g

d

a

h

e

b

i

f

c

g h i f c
d e e e e e ‘f’ was popped. ‘c’ was pushed.

a b b b b b b

h i

f

c

Example: graphTraversalUsingStack(a)

32

g

d

a

e

b

g

d

a

h

e

b

i

f

c

g h i f c
d e e e e e e

a b b b b b b b b

h i

f

c

Order of nodes visited
(push order) : abdeghifc

a

b c d

ie f hg

j k

treeTraversalUsingQueue(root){
initialize empty queue q
q.enqueue(root)
while q is not empty {

cur = q.dequeue()
visit cur
for each child of cur

q.enqueue(child)
}

}

// visit after dequeue

Recall: breadth first tree traversal

33

for each level i
visit all nodes at level i

Breadth first graph traversal

34

graphTraversalUsingQueue(v){
visit v
initialize empty queue q
q.enqueue(v)
while (q is not empty) {

u = q.dequeue()
for each w in u.adjList{

if (!w.visited){
visit w // visit at ‘same time’ as enqueue
q.enqueue(w)

}
}

}
}

Example

35

fc

d

a e

b

graphTraversalUsingQueue(c)

queue
c

c

Example

36

fc

d

a e

b

graphTraversalUsingQueue(c)

queue
c
f

fc

Example

37

fc

d

a e

b

graphTraversalUsingQueue(c)

queue
c
f
be

fc

e

b

Using alphabetical
order for adjacency list.

Example

38

fc

d

a e

b

graphTraversalUsingQueue(c)

queue
c
f
be
e

fc

e

bTraversal defines a tree whose root is the starting vertex.

Example: graphTraversalUsingQueue(a)

39

g

d

a

h

e

b

i

f

c
a

a

Example: graphTraversalUsingQueue(a)

40

g

d

a

h

e

b

i

f

c
a
bd

d

a b

Example: graphTraversalUsingQueue(a)

41

g

d

a

h

e

b

i

f

c
a
bd
dce

d

a

e

b c

Example: graphTraversalUsingQueue(a)

42

g

d

a

h

e

b

i

f

c
a
bd
dce
cegd

a

e

b c

g

Example: graphTraversalUsingQueue(a)

43

g

d

a

h

e

b

i

f

c
a
bd
dce
ceg
egf

d

a

e

b c

g

f

Example: graphTraversalUsingQueue(a)

44

g

d

a

h

e

b

i

f

c
a
bd
dce
ceg
egf
gfh

d

a

e

b c

g

f

h

Example: graphTraversalUsingQueue(a)

45

g

d

a

h

e

b

i

f

c
a
bd
dce
ceg
egf
gfh
fh

d

a

e

b c

g

f

h

Example: graphTraversalUsingQueue(a)

46

g

d

a

h

e

b

i

f

c
a
bd
dce
ceg
egf
gfh
fh
hi

d

a

e

b c

g

f

h i

Example: graphTraversalUsingQueue(a)

47

g

d

a

h

e

b

i

f

c
a
bd
dce
ceg
egf
gfh
fh
hi
i

d

a

e

b c

g

f

h i

1 2 4

3 5 7

6 8 9

Note order of nodes visited: abdcegfhi.

Traversal defines a tree whose root is the starting vertex.

One can show in general that this traversal first reaches nodes whose
shortest path is length 0, then 1, then 2, etc. i.e. breadth first.

Coming up…

Lectures

Wed & Fri, March 30 & April 1

recurrences

Mon, Wed, Fri : April 4, 6, 8

big O, ...

Assessments

Quiz 5 is in Mon. April 4

Assignment 4 due Wed. April 6.

48

