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Definition

A  directed graph is a set of vertices (or “nodes”)

and set  of ordered pairs of these vertices called edges. 
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Examples (Directed)
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Vertices 

airports

web pages

Java objects

Edges

flights

links (URLs)

references



Definition

A  undirected graph is a set of vertices

and set  of unordered pairs, again called edges. 
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Examples (Undirected)
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Vertices 

people

events

towns/cities

Edges

friends

conflicts (edge if two events 
cannot be at same time)

roads (two way)
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We will mostly discuss directed graphs.



Terminology:    “in degree”
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Terminology:    “out degree”
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Example:   www pages 
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In degree:     How many web 
pages link to some web page 
(e.g.  to  f ) ? 

Out degree:   How many web 
pages does some web page 
link to (e.g.  from  f ) ?
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Google “crawls” the web graph, retrieving and storing as many 
web pages as it can.

Google updates its web graph:
• the vertices V are the web pages
• the edges E are the hyperlink (references) within the web 

pages

ASIDE:   Google also updates a hashmap:   
• the keys K are the URL’s, and the values are the web pages



ASIDE:   Google PageRank

Google tries to find important web pages for your search term.

Q:    How important is a web page ?

A:
- Which set of pages  { }  link  to v  and how important is each 

page (recursive definition!)  ?
- How many other pages does each point to ?
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To define the “page rank” of :
Let  be a vertex such that 

is an edge.

Let   be the out-degree of w.
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To define the “page rank” of :
Let  be a vertex such that 

is an edge.

Let   be the out-degree of w.

Define the PageRank of 

ଵ

ଷ

ଶ

ASIDE:     To calculate this, (1) we need a list of the incoming edges to each 
vertex,  similar to an adjacency list but now we list the incoming instead of 
outgoing edges, and (2) we compute for all and then plug the result 
back into the right side, and iterate.    We initialize all to 1.
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Terminology:    path
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Examples
• acfeb
• dac
• dcfeb
• …..

A path is a sequence of 
edges such that the end 
vertex of one edge is 
the start vertex of the 
next edge.  No vertex 
may be repeated except 
first and last.



Terminology:    cycle
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Examples
• febf
• efe
• fbf
• …

A cycle is a path such 
that the last vertex is 
the same as the first 
vertex. 



Directed Acyclic Graph
(directed graph with no cycles)

a d

c

b
There are three paths from 
a to d,  but no cycles.
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DAGs are used to capture dependencies.   e.g.   
• a causes or implies b
• a must happen before b can happen (temporally)
• .....



303
Software

Design

302
Program

Lang

273
Comp.

Sys.

251
Data Str

& Alg

350
Num.
Meth

421
Data-
bases

424
Artif.
Intel.

310
Oper.
Sys.

360
Alg.

Design

330
Theory
Comp.

206
Software

Sys

250
Intro

CompSci

202
Intro

Program

240
Disc.
Str. 1

223
Linear 

Alg.

222
Cal III

323
Prob.

SYSTEMS
(compilers, networks,

distributed sys,  
concurrency,  web,..)

APPLICATIONS
(graphics, vision,

bioinf, games,
machine learning..)

THEORY
(crypto, optimization, game theory,
logic,  correctness, computability..)

MATH
(prereqs for many upper level COMP courses)

19

This will be a solid 
line next year.



Weighted Graph
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ASIDE:  Shortest path algorithms
(COMP 251)

e.g. Given a graph,   what is the shortest (weighted) path 
between  two vertices?
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ASIDE:  “Travelling Salesman” 
(COMP 360)

Find the minimum weight 
cycle that visits all vertices 
once. (except first & last).

This is a hard problem  (called 
“NP complete”).   

With vertices and edges 
between each pair,  time 
complexity is which 
is very slow.
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Graph ADT

• addVertex(),  addEdge()
• removeVertex(),  removeEdge() 
• getVertex(),   getEdge()     

• containsVertex(),  containsEdge()
• numVertices(),  numEdges()
• …
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How to implement a Graph class?

• Graphs are a generalization of trees,  but a graph does not 
have a root vertex.

• Outgoing edges from a vertex in a graph are like children of 
a vertex in a tree.   

• Incoming edges are like parent(s).   

There are two standard ways of representing edges
(next few slides).
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1.  Adjacency List  
(generalization of children in trees) 
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Here each adjacency list is sorted, but that is not 
always possible/meaningful (or necessary).



class Graph<T>  {
:

class Vertex<T> {                                  //    could have called it GNode
ArrayList<Vertex>       adjList;        //  end vertex of edge  (start is ‘this’ vertex)  

T          element;
}

:
}

Q:   What if you want the edges to have weights?

How to implement a graph with adjacency lists in Java? (1)
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class Graph<T>  {                      //   this would be a weighted graph

class Vertex<T>   {
ArrayList<Edge>    adjList;     //     end vertex of an edge  (start is ‘this’ vertex)  
T         element;

} 

class Edge {
Vertex endVertex;
double                 weight;

: 
}

}

Q:    How to access vertices?

How to implement a graph with adjacency lists in Java? (2)
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Q:    How to access vertices?

A:     Use a HashMap.    The key could be a string name for each vertex, 
e.g.  “YUL” for Trudeau airport,  “LAX”  for Los Angeles,  etc.  

class Graph<T>  {                      

HashMap< String, Vertex<T> >    vertexMap;  

class Vertex<T>   {
ArrayList<Edge>    adjList;     
T         element;

} 

class Edge {
Vertex endVertex;
double                 weight;

: 
}

}
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HashMap’s have methods
like getKeys(),  getValues(), ...



2.  Adjacency Matrix
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a  b  c  d  e  f
a 0  0  1  0  0  0 
b 0  0  0  0  0  1
c 0  0  0  0  0  1
d 1  0  1  0  0  0
e 0  1  0  0  0  1
f 0  1  0  0  1  0

boolean adjMatrix[ 6 ][ 6 ]

Note:
• We need a hashmap from vertex 

names to indices 0, 1, …. , n-1. 



2.  Adjacency Matrix
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a  b  c  d  e  f
a 1 0  1  0  0  0 
b 0  0 0  0  0  1
c 0  0  0 0  0  1
d 1  0  1  0 0  0
e 0  1  0  0  1 1
f 0  1  0  0  1  0

boolean adjMatrix[ 6 ][ 6 ]

loop

Note:
• Use the diagonal elements for loop 

edges.



2.  Adjacency Matrix
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a  b  c  d  e  f
a 3 0  2  0  0  0 
b 0  0 0  0  0  8
c 0  0  0 0  0  3
d 2  0  6  0 0  0
e 0  5  0  0  4 1
f 0  3  0  0  8  0

int adjMatrix[ 6 ][ 6 ]

Note:
• For a weighted graph,  we 

could use weights in the 
matrix instead of booleans.
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See Exercises for when you would use 
adjacency list versus  adjacency matrix.

Hint:  it depends on how many edges we have 
relative to number of vertices.



Coming up…

Lectures

Mon. March 28

Graphs traversal

Wed & Fri,   March 30 & April 1

recurrences

Mon, Wed,  Fri :    April 4, 6, 8

big O, ...  

Assessments

Quiz 5 is in Mon. April 4

Assignment 4 due Wed. April 6.
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