
1

COMP 250

Lecture 31

graphs 1

March 25, 2022

Example

2

f

g

c

d

a e

b h

Definition

A directed graph is a set of vertices (or “nodes”)

and set of ordered pairs of these vertices called edges.

3

Examples (Directed)

4

Vertices

airports

web pages

Java objects

Edges

flights

links (URLs)

references

Definition

A undirected graph is a set of vertices

and set of unordered pairs, again called edges.

5

Examples (Undirected)

6

Vertices

people

events

towns/cities

Edges

friends

conflicts (edge if two events
cannot be at same time)

roads (two way)

7

We will mostly discuss directed graphs.

Terminology: “in degree”

8

f

g

c

d

a e

b

h

v
a
b
c
d
e
f
g
h

in degree
1
2
2
0
1
3
0
1

Terminology: “out degree”

9

f

g

c

d

a e

b

h

v
a
b
c
d
e
f
g
h

out degree
1
1
1
2
2
2
1
0

Example: www pages

10

f

g

c

d

a e

b

h

In degree: How many web
pages link to some web page
(e.g. to f) ?

Out degree: How many web
pages does some web page
link to (e.g. from f) ?

11

Google “crawls” the web graph, retrieving and storing as many
web pages as it can.

Google updates its web graph:
• the vertices V are the web pages
• the edges E are the hyperlink (references) within the web

pages

ASIDE: Google also updates a hashmap:
• the keys K are the URL’s, and the values are the web pages

ASIDE: Google PageRank

Google tries to find important web pages for your search term.

Q: How important is a web page ?

A:
- Which set of pages { } link to v and how important is each

page (recursive definition!) ?
- How many other pages does each point to ?

12

13

To define the “page rank” of :
Let be a vertex such that

is an edge.

Let be the out-degree of w.

14

To define the “page rank” of :
Let be a vertex such that

is an edge.

Let be the out-degree of w.

Define the PageRank of

ଵ

ଷ

ଶ

ASIDE: To calculate this, (1) we need a list of the incoming edges to each
vertex, similar to an adjacency list but now we list the incoming instead of
outgoing edges, and (2) we compute for all and then plug the result
back into the right side, and iterate. We initialize all to 1.

15

Terminology: path

16

f

g

c

d

a e

b

h

Examples
• acfeb
• dac
• dcfeb
• …..

A path is a sequence of
edges such that the end
vertex of one edge is
the start vertex of the
next edge. No vertex
may be repeated except
first and last.

Terminology: cycle

17

f

g

c

d

a e

b

h

Examples
• febf
• efe
• fbf
• …

A cycle is a path such
that the last vertex is
the same as the first
vertex.

Directed Acyclic Graph
(directed graph with no cycles)

a d

c

b
There are three paths from
a to d, but no cycles.

18

DAGs are used to capture dependencies. e.g.
• a causes or implies b
• a must happen before b can happen (temporally)
•

303
Software

Design

302
Program

Lang

273
Comp.

Sys.

251
Data Str

& Alg

350
Num.
Meth

421
Data-
bases

424
Artif.
Intel.

310
Oper.
Sys.

360
Alg.

Design

330
Theory
Comp.

206
Software

Sys

250
Intro

CompSci

202
Intro

Program

240
Disc.
Str. 1

223
Linear

Alg.

222
Cal III

323
Prob.

SYSTEMS
(compilers, networks,

distributed sys,
concurrency, web,..)

APPLICATIONS
(graphics, vision,

bioinf, games,
machine learning..)

THEORY
(crypto, optimization, game theory,
logic, correctness, computability..)

MATH
(prereqs for many upper level COMP courses)

19

This will be a solid
line next year.

Weighted Graph

20

f

g

c

d

a e

b h

12

2

7

9

11

4

7
45

ASIDE: Shortest path algorithms
(COMP 251)

e.g. Given a graph, what is the shortest (weighted) path
between two vertices?

21

g

c

d

a
12

2 7

11

4

7

ASIDE: “Travelling Salesman”
(COMP 360)

Find the minimum weight
cycle that visits all vertices
once. (except first & last).

This is a hard problem (called
“NP complete”).

With vertices and edges
between each pair, time
complexity is which
is very slow.

22

Graph ADT

• addVertex(), addEdge()
• removeVertex(), removeEdge()
• getVertex(), getEdge()

• containsVertex(), containsEdge()
• numVertices(), numEdges()
• …

23

How to implement a Graph class?

• Graphs are a generalization of trees, but a graph does not
have a root vertex.

• Outgoing edges from a vertex in a graph are like children of
a vertex in a tree.

• Incoming edges are like parent(s).

There are two standard ways of representing edges
(next few slides).

24

1. Adjacency List
(generalization of children in trees)

25

f

g

c

d

a e

b

h

v
a
b
c
d
e
f
g
h

v.adjList
c
f
f
a, c
b, f
b, e
h

Here each adjacency list is sorted, but that is not
always possible/meaningful (or necessary).

class Graph<T> {
:

class Vertex<T> { // could have called it GNode
ArrayList<Vertex> adjList; // end vertex of edge (start is ‘this’ vertex)

T element;
}

:
}

Q: What if you want the edges to have weights?

How to implement a graph with adjacency lists in Java? (1)

26

class Graph<T> { // this would be a weighted graph

class Vertex<T> {
ArrayList<Edge> adjList; // end vertex of an edge (start is ‘this’ vertex)
T element;

}

class Edge {
Vertex endVertex;
double weight;

:
}

}

Q: How to access vertices?

How to implement a graph with adjacency lists in Java? (2)

27

28

Q: How to access vertices?

A: Use a HashMap. The key could be a string name for each vertex,
e.g. “YUL” for Trudeau airport, “LAX” for Los Angeles, etc.

class Graph<T> {

HashMap< String, Vertex<T> > vertexMap;

class Vertex<T> {
ArrayList<Edge> adjList;
T element;

}

class Edge {
Vertex endVertex;
double weight;

:
}

}

3

6

8

1
4

HashMap’s have methods
like getKeys(), getValues(), ...

2. Adjacency Matrix

29

fc

d

a e

b

a b c d e f
a 0 0 1 0 0 0
b 0 0 0 0 0 1
c 0 0 0 0 0 1
d 1 0 1 0 0 0
e 0 1 0 0 0 1
f 0 1 0 0 1 0

boolean adjMatrix[6][6]

Note:
• We need a hashmap from vertex

names to indices 0, 1, …. , n-1.

2. Adjacency Matrix

30

fc

d

a e

b

a b c d e f
a 1 0 1 0 0 0
b 0 0 0 0 0 1
c 0 0 0 0 0 1
d 1 0 1 0 0 0
e 0 1 0 0 1 1
f 0 1 0 0 1 0

boolean adjMatrix[6][6]

loop

Note:
• Use the diagonal elements for loop

edges.

2. Adjacency Matrix

31

fc

d

a e

b

a b c d e f
a 3 0 2 0 0 0
b 0 0 0 0 0 8
c 0 0 0 0 0 3
d 2 0 6 0 0 0
e 0 5 0 0 4 1
f 0 3 0 0 8 0

int adjMatrix[6][6]

Note:
• For a weighted graph, we

could use weights in the
matrix instead of booleans.

2

6

2
3

1

8

3
8

4

5

3

32

See Exercises for when you would use
adjacency list versus adjacency matrix.

Hint: it depends on how many edges we have
relative to number of vertices.

Coming up…

Lectures

Mon. March 28

Graphs traversal

Wed & Fri, March 30 & April 1

recurrences

Mon, Wed, Fri : April 4, 6, 8

big O, ...

Assessments

Quiz 5 is in Mon. April 4

Assignment 4 due Wed. April 6.

33

