COMP 250

Lecture 31

graphs 1

March 25, 2022

Definition

A directed graph is a set of vertices (or “nodes”)

V={v, : i€ 1,.,n}
and set of ordered pairs of these vertices called edges.

E = {(vi,vj) : L,j e 1,..,n}

Examples (Directed)

Vertices Edges
airports flights
web pages links (URLs)

Java objects references

Definition

A undirected graph is a set of vertices

V={v, : i€ 1,.,n}
and set of unordered pairs, again called edges.

E={ {vi,vj}: i,j € 1,..,n}

Examples (Undirected)

Vertices Edges
people friends
events conflicts

towns/cities roads

We will mostly discuss directed graphs.

Terminology: “in degree”

/@ i in degree
i)@~@< |
R
® ; ;

Terminology: “out degree”

/@ v out degree
i)@~@< |
v
® S

7

O+—©

Example: www pages

In degree: How many web
pages link to some web page
(e.g. to f) 7

A

Out degree: How many web
pages does some web page
link to (e.g. from f)?

Google

Google “crawls” the web graph, retrieving and storing as many
web pages as it can.

Google updates its web graph:
* the vertices V are the web pages
 the edges E are the hyperlink (references) within the web

pages

ASIDE: Google PageRank

Google tries to find important web pages for your search term.

Q: How importantis a web page v ?

~P—C

- Which set of pages {w } link tov and how important is each
page w (recursive definition!) ?

- How many other pages does each w point to ?

To define the “page rank” of v :
Let w be a vertex such that @ﬂ)(
(w,v) is an edge.

Let N,,:(w) be the out-degree of w.

13

To define the “page rank” of v :

Let w be a vertex such that ’ﬂ

(w,v) is an edge.
Let N,,:(w) be the out-degree of w.

Define the PageRank of v:

) R(w)
RO = D s

incoming edges
(w,v) to v

ASIDE: To calculate this, (1) we need a list of the incoming edges to each
vertex, similar to an adjacency list but now we list the incoming instead of
outgoing edges, and (2) we compute R (v) for all v, and then plug the result

back into the right side, and iterate. We initialize all R(v) to 1. 14

&« > C A Notsecure | infolab.stanford.edu/~sergey/ 1©2 Y %N [. :

Sergey Brin's Home Page

Ph.D. student in Computer Science at Stanford -
sergey(@gcs.stanford.edu

Research

Currently I am at Google.

In fall '98 I taught CS 349.

Data Mining

A major research interest is data mining and I run a meeting
group here at Stanford. For more information take a look at
the MIDAS home page or see the datamine maling list
achive. Here are some recent publications:

15

Terminology:

path

A path is a sequence of
edges such that the end
vertex of one edge is
the start vertex of the
next edge. No vertex
may be repeated except
first and last.

Examples

Terminology: cycle

A cycle is a path such

/ that the last vertex is
@_,Gc) the same as the first

o Ny

Examples
\
efe
¢ e fbf

Directed Acyclic Graph

(directed graph with no cycles)

PN

@ T @ There are three paths from

\@/ a tod, but no cycles.

DAGs are used to capture dependencies. e.g.
* acausesorimplies b
* a must happen before b can happen (temporally)

202
Intro
Program

S

MATH

(preregs for many upper level COMP courses)

323
Prob.

20 240 223 222
Software Intro Disc. Linear Cal i
Sys CompSci This will be a solid Str. 1 Alg.
1 line next year. _ -~
: A/////// ”’,,
1 Phe
y 4
273 303 302 251 350
Comp. Software Program Data Str Num.
Sys. Design Lang & Alg Meth
! / \
310 421 424 360 330
Oper. Data- Artif. Alg. Theory
Sys. bases Intel. Design Comp.
Y - Y | Y
SYSTEMS APPLICATIONS THEORY

(compilers, networks,
distributed sys,
concurrency, web,..)

(graphics, vision,
bioinf, games,
machine learning..)

(crypto, optimization, game theory,
logic, correctness, computability..)

Weighted Graph

ASIDE: Shortest path algorithms

(COMP 251)

e.g. Given a graph, what is the shortest (weighted) path
between two vertices?

Get directions My places - co 9

® R | & | & .

McGill University, Sherbrooke Street West, M

The White House, Pennsylvania Avenue North
Add Destination - Show options

GET DIRECTIONS

Walking directions are in beta.
Use caution — This route may be missing A = 1) Nty
sidewalks or pedestrian paths / i

Suggested routes

U.s.98 914 km, 188 hours

USs-118§ 945 km, 194 hours i ! Pennsylvania agen

Or take Public Transit 16 hours 1 min

(4 transfers) P'aladelphia

Marxlangd: New,Jersey

Walking directions to The White 30>
House

21

ASIDE: “Travelling Salesman”
(COMP 360)

Find the minimum weight
cycle that visits all vertices
once.

This is a hard problem (called
“NP complete”).

With n vertices and edges
between each pair, time

complexity is 0(n? 2™) which
is very slow.

Graph ADT

addVertex(), addEdge()
removeVertex(), removeEdge()

getVertex(), getEdge()

containsVertex(), containsEdge()

numVertices(), numEdges()

How to implement a Graph class?

* Graphs are a generalization of trees,

e Outgoing edges from a vertex in a graph are like children of
a vertex in a tree.

* Incoming edges are like parent(s).

There are two standard ways of representing edges

(next few slides).

1. Adjacency List

?_,%@
O—
\
@/

|

®

v.adjList
C

> 0m —hMd® O 0O T W |L
>SS oo —hh
M —H O

Here each adjacency list is sorted, but that is not
always possible/meaningful (or necessary).

How to implement a graph with adjacency lists in Java? (1)

class Graph<T> {

class Vertex<T> { // could have called it GNode

Arraylist<Vertex> adjList; // end vertex of edge (start is ‘this’ vertex)
T element;

Q: What if you want the edges to have weights?

How to implement a graph with adjacency lists in Java? (2)

class Graph<T> { // this would be a weighted graph

class Vertex<T> {
ArrayList<Edge> adjList; // end vertex of an edge (start is ‘this’ vertex)

T element;
}
class Edge {
Vertex endVertex;
double weight;
}

}

Q: How to access vertices?

27

Q: How to access vertices?

A: Use a HashMap. The could be a string name for each vertex,
e.g. “YUL” for Trudeau airport, “LAX” for Los Angeles, etc.

class Graph<T> { ~ g
HashMap< , Vertex<T> > vertexMap; = H
class Vertex<T> { =— B —Hd
ArrayList<Edge> adjlist;
T element;
}
class Edge { - H
vertex enc‘jVertex; HashMap’s have methods
double weight; like getKeys(), getValues(), ...
}

} 28

2. Adjacency Matrix

abcdef

A%@ al001000

b|lOO0OO0OO01

@ @ cl000O0O01

@/ \ v d[101000

@ el01 0001

Note- f1010010
* We need a hashmap from vertex

names to indices O, 1,, n-1.

boolean adjMatrix[6][6]

2. Adjacency Matrix

loop

2, abcdef

DD afieioos
o0—a

@ NG

101000
Note:

010011
010010
* Use the diagonal elements for loop
edges.

-, O Q O T Q

boolean adjMatrix[6][6]

30

2. Adjacency Matrix

{73 4 abcdef
é@:) al302000
bl/OOOOOS8
© '@ ° c/|000003
@/6' \ v d{206000
@ el050041
f1030080
Note:
 For a weighted graph, we
could use weights in the int adeatrix[G][6]

matrix instead of booleans.

See Exercises for when you would use
adjacency list versus adjacency matrix.

Hint: it depends on how many edges we have
relative to number of vertices.

Coming up...

Lectures

Assessments

Mon. March 28

Graphs traversal

Wed & Fri, March 30 & April 1

recurrences

Mon, Wed, Fri: April4,6,8
big O, ...

Quiz 5 isin Mon. April 4

Assignment 4 due Wed. April 6.

