COMP 250

Lecture 31

graphs 1

March 25, 2022

Example

Definition

A directed graph is a set of vertices (or "nodes")

$$
V=\left\{v_{i}: i \in 1, \ldots, n\right\}
$$

and set of ordered pairs of these vertices called edges.

$$
E=\left\{\left(v_{i}, v_{j}\right): i, j \in 1, \ldots, n\right\}
$$

Examples (Directed)

Vertices
airports
web pages

Java objects

Edges
flights
links (URLs)
references

Definition

A undirected graph is a set of vertices

$$
V=\left\{v_{i}: i \in 1, \ldots, n\right\}
$$

and set of unordered pairs, again called edges.

$$
E=\left\{\left\{v_{i}, v_{j}\right\}: i, j \in 1, \ldots, n\right\}
$$

Examples (Undirected)

Vertices
people
events
towns/cities

Edges
friends
conflicts (edge if two events
cannot be at same time)
roads (two way)

We will mostly discuss directed graphs.

Terminology: "in degree"

Terminology: "out degree"

Example: www pages

In degree: How many web pages link to some web page (e.g. to f) ?

Out degree: How many web pages does some web page link to (e.g. from f) ?

Google

Google "crawls" the web graph, retrieving and storing as many web pages as it can.

Google updates its web graph:

- the vertices V are the web pages
- the edges E are the hyperlink (references) within the web pages

ASIDE: Google also updates a hashmap:

- the keys K are the URL's, and the values are the web pages

ASIDE: Google PageRank

Google tries to find important web pages for your search term.

Q: How important is a web page v ?

A:

- Which set of pages $\{w$ \} link to v and how important is each page w (recursive definition!) ?
- How many other pages does each w point to ?

To define the "page rank" of v :
Let w be a vertex such that (w, v) is an edge.

Let $N_{\text {out }}(w)$ be the out-degree of w.

To define the "page rank" of v :
Let w be a vertex such that (w, v) is an edge.

Let $N_{\text {out }}(w)$ be the out-degree of w.

Define the PageRank of v :

$$
R(v)=\sum_{\substack{\text { incoming edges } \\(w, v) \text { to } v}} \frac{R(w)}{N_{\text {out }}(w)}
$$

ASIDE: To calculate this, (1) we need a list of the incoming edges to each vertex, similar to an adjacency list but now we list the incoming instead of outgoing edges, and (2) we compute $R(v)$ for all v, and then plug the result back into the right side, and iterate. We initialize all $R(v)$ to 1 .

Sergey Brin's Home Page

Ph.D. student in Computer Science at Stanford sergey@cs.stanford.edu

Research

Currently I am at Google.

In fall '98 I taught CS 349.

Data Mining

A major research interest is data mining and I run a meeting group here at Stanford. For more information take a look at the MIDAS home page or see the datamine maling list achive. Here are some recent publications:

Terminology: path

A path is a sequence of edges such that the end vertex of one edge is the start vertex of the next edge. No vertex may be repeated except first and last.

Examples

- acfeb
- dac
- dcfeb

Terminology: cycle

A cycle is a path such that the last vertex is the same as the first vertex.

Examples

- febf
- efe
- fbf

Directed Acyclic Graph

 (directed graph with no cycles)

There are three paths from a to d, but no cycles.

DAGs are used to capture dependencies. e.g.

- a causes or implies b
- a must happen before b can happen (temporally)
-

Weighted Graph

ASIDE: Shortest path algorithms (COMP 251)

e.g. Given a graph, what is the shortest (weighted) path between two vertices?

ASIDE: "Travelling Salesman" (COMP 360)

Find the minimum weight cycle that visits all vertices once.

This is a hard problem (called "NP complete").

With n vertices and edges between each pair, time complexity is $\mathrm{O}\left(n^{2} 2^{n}\right)$ which is very slow.

Graph ADT

- addVertex(), addEdge()
- removeVertex(), removeEdge()
- getVertex(), getEdge()
- containsVertex(), containsEdge()
- numVertices(), numEdges()
- ...

How to implement a Graph class?

- Graphs are a generalization of trees, but a graph does not have a root vertex.
- Outgoing edges from a vertex in a graph are like children of a vertex in a tree.
- Incoming edges are like parent(s).

There are two standard ways of representing edges (next few slides).

1. Adjacency List

 (generalization of children in trees)

$\underline{\mathbf{v}}$	v.ad
a	c
b	f
c	f
d	a, c
e	b, f
f	b, e
g	h
h	

Here each adjacency list is sorted, but that is not always possible/meaningful (or necessary).

How to implement a graph with adjacency lists in Java? (1)

```
class Graph<T> {
    :
    class Vertex<T> { // could have called it GNode
            ArrayList<Vertex> adjList; // end vertex of edge (start is 'this' vertex)
            T element;
    }
}
```

Q: What if you want the edges to have weights?

How to implement a graph with adjacency lists in Java? (2)

```
class Graph<T> { // this would be a weighted graph
    class Vertex<T> {
        ArrayList<Edge> adjList; // end vertex of an edge (start is 'this' vertex)
        T element;
    }
    class Edge {
        Vertex endVertex;
        double weight;
    }
}
```

Q: How to access vertices?

Q: How to access vertices?

A: Use a HashMap. The key could be a string name for each vertex,
e.g. "YUL" for Trudeau airport, "LAX" for Los Angeles, etc.

```
class Graph<T> {
    HashMap< String, Vertex<T> > vertexMap;
    class Vertex<T> {
        ArrayList<Edge> adjList;
    T element;
    }
    class Edge {
        Vertex endVertex;
        double weight;
        :
    }
}
```


2. Adjacency Matrix

- We need a hashmap from vertex names to indices $0,1, \ldots$. , $\mathrm{n}-1$.
boolean adjMatrix[6][6]

2. Adjacency Matrix

loop

Note:

a b c d e f	
a	101000
b	00000
C	00000
d	10100
e	01001
	0100

- Use the diagonal elements for loop edges.
boolean adjMatrix[6][6]

2. Adjacency Matrix

Note:

- For a weighted graph, we could use weights in the matrix instead of booleans.
int adjMatrix[6][6]

See Exercises for when you would use adjacency list versus adjacency matrix.

Hint: it depends on how many edges we have relative to number of vertices.

Coming up...

Lectures

Mon. March 28
Graphs traversal
Wed \& Fri, March 30 \& April 1
recurrences
Mon, Wed, Fri : April 4, 6, 8
big O, ...

Assessments

Quiz 5 is in Mon. April 4

Assignment 4 due Wed. April 6.

