Lecture 30

Heaps 3

- Sum of depths
- Sum of heights
- $O(n)$ algorithm for building a heap

Binary trees should not be drawn like this:

They should be drawn like this:

because level L has 2^L nodes.

Consider a complete binary tree of height h, with all levels full.

Level L has 2^L nodes: $2^0, \ldots, 2^{L-1}$

Number of nodes: $N = 2^{h+1} - 1$

Height of tree: $h = \log(N+1) - 1$

What is sum of depths of nodes?

Note: average depth = $\frac{1}{N}$ (sum of depths)

What is sum of heights of nodes?

Note: average height = $\frac{1}{N}$ (sum of heights)

Inserting n nodes into a binary tree:

Best case (for number of nodes traversed): sum of depths.
\[
\sum_{l=0}^{h} l \cdot 2^l = 2 \sum_{l=0}^{h} l \cdot 2^{l-1}, \quad x=2
\]

= \[2 \sum_{l=0}^{h} \frac{d}{dx} x^l, \quad x=2\]

= \[2 \frac{d}{dx} \sum_{l=0}^{h} x^l\]

= \[2 \frac{d}{dx} \left(\frac{x^{h+1} - 1}{x-1} \right)\]

and substitute \(x=2 \)

Sum of depths

= \((h-1)2^{h+1} + 2\)

= \((\log(n+1) - 2) \cdot (n+1) + 2\)

Which is \(O(n \log n) \) and \(\Omega(n \log n) \)

Generalizing to complete \(k \)-ary trees

(Recall Assignment 3 tries)

number of nodes = \[\sum_{l=0}^{h} k^l\]

sum of depths = \[\sum_{l=0}^{h} k^l \cdot l\]

Use same trick \(x=k \).

\[\sum \text{of depths is } O(n \log n) \quad \Omega(n \log n)\]

Parent-child index relations

\[\begin{aligned}
&1 \\
&2 \\
&3 \\
&4 \\
&5 \\
&6 \\
&7 \\
&8 \\
&9 \\
&10 \\
&11 \\
&12 \\
&13 \\
&14 \\
&15 \\
&16 \\
&17 \\
&18 \\
&19 \\
&20 \\
\end{aligned}\]

\[\begin{aligned}
\text{parent} &= \text{child}/2 \\
\text{left child} &= 2 \times \text{parent} \\
\text{right child} &= 2 \times \text{parent} + 1
\end{aligned}\]

Claim: Left child of \(i \) is \(2i \).

Proof: Let \(i \) be the \(m \)th node in level \(l \).

Then \(i = 2^l + m - 1 \).

But the last node of level \(l \) is \(2^{l+1} - 1 \).

Thus, the children of nodes \(2^l, \ldots, i \) are \(2^{l+1}, \ldots, 2^{l+1} + 2m - 1 \).

Thus, the left child of \(i \) is \(2^{l+1} + 2m - 2 \).

Thus \(2 \times i \).
Last lecture: buildHeap()

for i = 1 to n
 upHeap(i)

worst case: total number of swaps t(n)

\[t(n) < n \log n \]

A second way to build a heap

for i = \(\lfloor n/2 \rfloor \) down to 1
 downHeap(a, n, i)

downHeap(a, n, k)?
i = k
 while (2 * i ≤ n)
 child \(= 2 * i \) // left child
 if (child < n)
 if a[child+1] < a[child]
 child += 1
 end if
 end if
 if a[child] < a[i] {
 swap keys (a, i, child)
 }
 end while

Example

1 2

Summary

Most nodes are near level \(h \)

for i = 1 to n
 upHeap(a, n, i)
end for

for i = n to 1
 downHeap(a, n, i)
end for

\(O(n \log n) \) \hspace{1cm} \(O(n) \)

faster!