
1

COMP 250

Lecture 30

hashing

March 22, 2022

RECALL: Map

2

keys (type K) values (type V)

Each (key, value) pair is an “entry”.
For each key, there is at most one value.

RECALL: Java K.hashcode()

3

keys K int
(32 bits)

ଷଵ ଷଵ

integers in large range

RECALL: Special case that keys are
positive integers in small range

4

4

9

12

22

3

6

8

14

We will try to combine these two ideas as shown below....

5

keys (K)

0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

values (V)

hashcode

int
(32 bits)

ଷଵ ଷଵ

?

positive integers
in small range

integers in large range

6

keys (K)

hashcode compression
0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

values (V)

int
(32 bits)

ଷଵ ଷଵ

... using a many-to-one ”compression” map.

where is the length of the array.

compression :

Example: let

hash code “hash value”

- 41
16
25
21

- 36
35
53

6
2
4
0
1
0
4

7

compression map:

0

:

6

Hash function

8

“hash function” compression hashCode

that is, hashCode followed by compression

9

keys (K)

hashcode compression

0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

values (V)

“hash function” : keys  {0, …, m-1}
“hash values”

int

10

keys (K)

hashcode() “compression”

0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

“values” (V)

int

Heads up! The term “values” is used in two ways. (different maps)

hash function : keys  {0, …, m-1}
“hash values”

“Collisions”
(when two or more keys map to the same hash value)

11

hashcode() “compression”

0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

intkeys (K)

“hash values”

Collisions can happen in two ways
as shown above.

12

hashcode() “compression”

0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

int

“hash values”

keys (K)

Solution to collision problem: “Hash Map” a.k.a. “Hash Table”
Each array slot holds a singly linked list of entries.
This is sometimes called “separate chaining”

Each array slot + linked list is called a bucket.
So there are m buckets.

13

0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

How to implement this?

14

class Node<K, V > {

Node<E> next;
K key;
V value;

}

0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

Node<K, V >[] buckets;

class MyHashTable<K, V > {

}

15

Why is it necessary to store (key, value) pairs in the
linked list?

Why not just store the values?

Answer: Multiple keys can map to the same bucket
(collisions). We need to keep track of which value
corresponds to which key.

“Load factor” of a hash map

16

This is the average number of entries per bucket.

One typically wants the load factor to be below 1.

Example of a “good hash”

17

0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

Example of a “bad hash”

18

0
:

:

9
:

:

22

m-1

3

6

8

14

Note that the load factor is the
same for this example and the
previous one. The issue here is
that now we have a bad hash.

Example of a hash function
h : K  {0, 1, …, m-1}

Example: Suppose keys are McGill Student IDs,
e.g. 260745918.

How many buckets m to use ? (consider load factor)

Good hash function?

Bad hash function ?

19

Example of a hash function
h : K  {0, 1, …, m-1}

Example: Suppose keys are McGill Student IDs,
e.g. 260745918.

How many buckets m to use ? 100,000 (why?)

Good hash function?

Bad hash function ?
20

Example of a hash function
h : K  {0, 1, …, m-1}

Example: Suppose keys are McGill Student IDs,
e.g. 260745918.

How many buckets m to use ? 100,000

Good hash function? rightmost 5 digits

Bad hash function ?

21

Example of a hash function
h : K  {0, 1, …, m-1}

Example: Suppose keys are McGill Student IDs,
e.g. 260745918.

How many buckets m to use ? 100,000

Good hash function? rightmost 5 digits

Bad hash function ? leftmost 5 digits

22

Performance of Hash Maps

23

• put(key, value)
• get(key)
• remove(key)

If load factor is less than 1 and if hash function is good,
then these operations are O(1) “in practice”. This beats all
potential map data structures that I considered last lecture !

If we have a bad hash, we can choose a different hash
function.

Performance of Hash Maps

24

• put(key, value)
• get(key)
• remove(key)
• contains(value)

In worst case, contains(value) will need to search through
each of the buckets i.e. search the linkedlists.

If there are entries in total, then it will need to check each
entry.

Performance of Hash Maps

25

• put(key, value)
• get(key)
• remove(key)
• contains(value)
• getKeys()
• getValues()

These last three methods all require traversing the hash
table. This takes time where is number of
entries and is the number of buckets.

Java HashMap<K,V> class

• In the constructor, you can specify initial number of
buckets, and maximum load factor
(default initialization = 16, and max load factor = .75)

• The hash function uses the key’s hashCode() and compression

26

Comparing keys with K.equals()

27

Recall that put(K,V), get(K), remove(K) all check if the
key is already present in the map. This requires K.equals().

Q: What should be the relationship between K.equals() and
K.hashCode() ?

Hint: what should happen when you call put(k1, v) and
later call get(k2) where k1.equals(k2) is true ?

A: If k1.equals(k2) is true, then we want
k1.hashCode() == k2.hashCode() to be true.

Note that the converse doesn’t hold: if two keys (e.g. strings) have equal hashCodes,
then we cannot expect these keys to be equal.

Java HashSet<E> class

28

Similar to HashMap<K,V>, but there are no values.
Use it to store a set of objects of some type.

• add(e)
• contains(e)
• remove(e)
• ……

If hash function is good, then these operations are O(1).
Note that a HashSet is not a list. There is no 1st, 2nd, ….
element.

Java HashSet<E> class

29

hashcode() “compression”

0
:
4
:

9
:

12

:

22

m-1

3

6

8

14

int
elements E
(Shape)

“hash values”

Recall Assignment 1

30

SLinkedList<Student>[] studentTable

This was a HashSet. The hashCode was the student ID which was a field in Student.

ASIDE: Java classes

• HashMap<K,V> implements the interface Map<K,V>

• HashTable<K,V> implements the interface Map<K,V>
(similar to HashMap)

• TreeMap<K,V> implements the interface Map<K,V>
(uses a binary search tree for the keys  requires that
keys are Comparable)

• HashSet<E> implements the interface Set<E>

• ...
31

Cryptographic Hashing (time permitting)

h: key (String)  hash value (e.g. 128 bits)

e.g. online tool for computing md5 hash of a string
http://www.miraclesalad.com/webtools/md5.php

32

32 hexadecimal digits
(128 bits)

Application: Password Authentication

e.g. Web page (server) needs to authenticate users.

{ (userID, password) } defines a map.

Keys are Strings (userID)
Values are Strings (password)

33

Password Authentication (unsecure)

Suppose the {(userID, password)} map is stored in a text file on
the web server where user logs in.

What would the user do to log in?
Enter username (key) and password (value).

What would the web server do?
Check if this entry matches what is stored in the map.

What could a mischievous hacker do?
Steal the text file, and then login to user accounts.

34

Password Authentication (secure)

The {(username, h(password)) } map is stored in a file on the
web server.

What would the user do?
Enter a username and password.

What would the web server do ?
Hash the password, throw away the password, and compare the
hashed password to that of the entry in map .

What could a mischievous hacker try to do?
Steal the text file. For some user name, guess the password:

“Brute force” or “dictionary” attack.
35

Cryptographic Hashing
We want a hash function h(password), e.g. md5, such that one can
infer almost nothing about the password from h(password).

Small changes in the key give very different hash values.

36

All strings 128 bit strings

md5 hash function

key (password) hash value
(md5 hashed password)

We want the time complexity
of finding some key that maps
to a given a hash value to be
very high.

37

password h(password)

message encrypted
message

hash

encryption

decryption

You learn about RSA encryption in MATH 240 Discrete Structures
and COMP 547 Cryptography and Data Security.

[ASIDE: Do not confuse hashing with (RSA) encryption/decryption.]

Coming up…

Lectures

Fri. March 25, Mon. March 28

Graphs 1

Wed March 30 ...

big O

Assessments

Quiz 5 is Mon. April 4.

Assignment 4 due Wed. April 6.

38

