
COMP 250

Lecture 3

binary numbers (continued),
Java primitive types,

ascii, Unicode
casting

Wed. Jan. 12, 2022
1

Addition in binary

The addition and multiplication algorithms from lecture 1 are based on operators
. These algorithms work for any base. (See lecture notes.)

For example,

2

11010
+ 01111

?

26
+ 15

41

Addition in binary

3

111100
11010

+ 01111
101001

26
+ 15

41

carry

The addition and multiplication algorithms from lecture 1 are based on operators
. These algorithms work for any base. (See lecture notes.)

For example,

Addition in binary

4

11111111111
+ 00000000001

100000000000 youtube video of odometer at 100,000

Fun example:

Let’s use the example above to ask a fundamental question about
binary number representations (next slide).

5

Q: How many bits N do we need to represent a positive integer in binary ?

What do we mean by “need”? We man using as few bits as possible, such that
ேିଵ and ௜ for

For example, we consider representations like (11010)ଶ but not (0000011010)ଶ

6

ேିଵ ସ ଷ ଶ ଵ ଴ ଶ

The smallest that can be is the bit number:

The largest that can be is the bit number:

Q: How many bits N do we need to represent a positive integer in binary ?

Assuming we are using as few bits as possible, suppose:

ଶ

ଶ

7

ேିଵ ସ ଷ ଶ ଵ ଴ ଶ

The smallest that can be is the bit number:

The largest that can be is the bit number:

Q: How many bits N do we need to represent a positive integer in binary ?

Assuming we are using as few bits as possible, suppose:

ଶ
ேିଵ

ଶ
ே

ேିଵ ே

 1 ଶ

Take the log (base 2) of each of the three terms :

8

The inequality is still correct since the log function is strictly increasing.

From here, we can show:

 ଶ where “floor” means “round down”.

From the previous slide:

0 0 undefined
1 1 1
2 10 2
3 11 2
4 100 3
5 101 3
6 110 3
7 111 3
8 1000 4
9 1001 4

10 1010 4
11 1011 4

: : :

m (decimal) m (binary) ଶ

9

Exact powers of
2 shown in red.

ASIDE: How are numbers represented in a computer?

How are integers represented (both positive and negative) ?

How are fractional numbers represented ?

Surprisingly, the answers do not depend on the computer or language.
Rather, there is a standard format that is used by all computers.
(For fractional numbers, the format is the IEEE 754 standard.)

The technical details are covered in detail in COMP 273 – see my lecture notes for
that course if you are curious. I will say a bit about how integers are represented
a few slides from now.

10

byte

integer values
short

int

long

float
fractional (“real”) numbers

double

boolean true or false
char One character

Java primitive types

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

These are reserved keywords.
11

Java variables : type declaration

12

We can declare a primitive type variable as follows.

x

int i;

double x;

i

3

x 4.75

i = 3;

x = 4.75;

i

b false

In order to use it, we need to assign it a value.

boolean b = false;

We can declare and assign a value in a single statement.
false is 00000000
true is 00000001

Java primitive types : what do they encode?

The number of bits used for each data type is fixed.
The bits can encode a particular set of values.

13

Keyword Size Values
byte 8-bits
short 16-bits
int 32-bits
long 64-bits
float 32-bits
double 64-bits
boolean 1-bit
char 16-bits

Java primitive types : what do they encode?

The number of bits used for each data type is fixed.
The bits can encode a particular set of values.

14

Keyword Size Values
byte 8-bits {−2଻, … , 2଻ − 1}

short 16-bits {−2ଵହ, … , 2ଵହ − 1}

int 32-bits {−2ଷଵ, … , 2ଷଵ − 1}

long 64-bits {−2଺ଷ, … , 2଺ଷ − 1}

float 32-bits COMP 273/ECSE 222
double 64-bits COMP 273/ECSE 222
boolean 1-bit {true, false}
char 16-bits later today

As I mentioned on slide 12, this uses 8 bits, but only the last bit matters

N bit integers

15

Java represents “signed” integers.
The values on the circle go from
0, 1, …. ୒ିଵ and then jump back
to ୒ିଵ, ୒ିଵ + 1, ….. -1.

e.g. N = 8
(byte)

Recall the concept of modulus: like a
circle, if you keep walking forward,
you get back to where you started.
With modulus operator, the circle is
0, 1, … , ୒ .

e.g. N = 8

127
-128

- 127

64

- 64

1
0

- 1

1
0
255

64

127
128
129

192

N bit integers

16

Java represents “signed” integers.
The values on the circle go from
0, 1, …. ୒ିଵ and then jump back
to ୒ିଵ, ୒ିଵ + 1, ….. -1.

e.g. N = 32
(int)

Recall the concept of modulus: like a
circle, if you keep walking forward,
you get back to where you started.
With modulus operator, the circle is
0, 1, … , ୒ .

e.g. N = 32

1
0

- 1

2ଷଵ − 1
2ଷଵ
2ଷଵ + 1

1
0

2ଷଶ − 1

2ଷଵ − 1
−2ଷଵ
−2ଷଵ + 1

2ଷ଴
2ଷ଴

−2ଷ଴

“Overflow” and “Underflow” e.g. int

Variables of type int store integer values from ଷଵ to ଷଵ .

ଷଵ  min int value
ଷଵ  max int value

Example of overflow : Example of underflow :

17

int x = 2147483647; (max)

System.out.println(x+1);

 prints -2147483648 (min)

int y = -2147483648; (min)

System.out.println(y-1);

 prints 2147483647 (max)

2ଷଵ − 1
−2ଷଵ

1
0

- 1

Floating Point
• In Java, fractional numbers are represented using “floating point”, similar to scientific

notation. e.g. ଶଷ

• The type can be either float (32 bits) or double (64 bits).

• All standard arithmetic operations (+, -, *, /) can be done on floating point.

• Java distinguishes between 1 and 1.0. If you write .0 after an integer, it will be
represented as a double. If you want to represent a float, see below.

18

int x = 3.0;

int x = 3;

double x = 3.0;

float y = 3.0;

float y = 3.0f;

Floating point approximation (round off)

The value of 1/3.0 is an approximation only.
More surprising perhaps, the value of 1/10.0 is also an approximation only.
The reason is that computers only represent sums of powers of 2, including
negative powers of 2 (1/2.0, 1/4.0, 1/8.0, etc).
Here is an interesting example:
System.out.println(0.1 + 0.1 + 0.1 + 0.1 + 0.1 +

0.1 + 0.1 + 0.1 + 0.1 + 0.1);

It prints out 0.9999999999999999 rather than 1.0

19

char data type

We can declare and initialize a variable of type char as follows:

char letter = 'a';

• Character literals appears in single quotes.
(A ‘literal’ is a particular character, string, or number.)

Character literals can only contain a single character. If you put two characters
inside quotes, then it is not a character but rather it is a string.

20

Escape Sequences

An escape sequence is a sequence of characters that represents a special character.
In Java, escape sequences are two characters and the first is a backslash.

Examples:

\n says to start a new line (e.g. when printing)
\" or \' represent quotation marks
\t represents a tab
\\ represents a backslash

Escape sequences are legal characters. e.g. char c = '\n';

21

char data type

The char data type is two bytes (16 bits).

Think of them as numbered from 0 to ଵ଺ 65,535
A common notation is ‘\u----’ where the – places are hexadecimal digits.

i.e. the values of a char range from '\u0000' to '\uffff‘

The first ଻ of them correspond to the ASCII characters (next slide).

22

ASCII table

23

Unicode

The char data uses Unicode which is an international standard.

Unicode is a superset of ASCII: the numbers 0-127 map to the same characters both
in ASCII and Unicode.

Unicode provides the fonts for many languages. It also encodes emoji’s.

ASIDE: there’s more to Unicode than this: you can expand beyond ଵ଺ symbols
by having pairs of char where the first one is essentially an escape character.

24

When we say that ASCII and Unicode are “codes”, we mean that
each character or symbol is represented by a sequence of bits.

But we know sequences of bits also represent numbers!
In Java, we can perform arithmetic with char values e.g.:

char c = 'a'; // 97

int k = c + 1; // 98

25

Comparing Chars
We can also compare char values using operators which
essentially compares their code values.

char letter0 = 'g';

char letter1 = 'k';

System.out.println(letter0 < letter1); // prints true

System.out.println('g' < 'G'); // prints false

System.out.println('%' >= '&'); // prints false

26

Type casting

Convert the values of variables from one type to another using type casting.

double y = 4.56;

int n = (int) y; // value of n is ??????

int x = 3;

double z = (double) x; // value of z is ??????

27

Type casting

Convert the values of variables from one type to another using type casting.

double y = 4.56;

int n = (int) y; // value of n is 4 (rounds down)

int x = 3;

double z = (double) x; // value of z is 3.0

28As we will see next, an explicit cast is unnecessary here.

narrower
explicit cast is needed

wider
implicit cast

double
float
long
int
char
short
byte

64
32
64
32
16
16
8“Wider” usually (but not

always) means more bits.

number of bits

Primitive type conversion – wider vs. narrower

29

type

char and short are special ... see later.

Examples of widening & narrowing

int i = 3;

double d = 4.2;

d = i; widening (“implicit casting”)  stores value 3.0

i = d; compile time error
i = (int) d; narrowing (“explicit casting”)  stores value 4

30

Examples of widening & narrowing

int i = 3;

double d = 4.2;

d = 5.3 * i; widening by "promotion"
(the casting here happens when the * operation is performed)

byte k = 127;
System.out.println(k + 1); widening by "promotion“ (to integer)

(the casting here happens when the + operation is performed)

Output: 128

31

Recall: Overflow and Underflow e.g. byte
How is represented as a byte ?

ଶ

What happens if we add ?
ଶ

32

127
-128

64

- 64

1
0

- 1

Overflow and Underflow e.g. byte

33

Recall that variables of type byte store values between ଻ and ଻

that is, and

Overflow:

byte k = 127;
System.out.println(k+1);
System.out.println((byte) (k+1));

Output:
128 (widening by promotion)

-128 (cast, narrowing)

Underflow:

byte j = -128;
System.out.println(j-1);
System.out.println((byte) (j-1));

Output:
-129 (widening by promotion)
127 (cast, narrowing)

Examples of widening & narrowing char

34

char first = 'a'; // 97
char second = (char) (first + 1);

first is automatically converted into an int when
performing first + 1 , which evaluates to 98.
(widening by promotion)

This int value is cast to char (narrowing), and 'b' is
stored in second.

Posted late in course... followup

35

It seem Eclipse and IDEA don’t require an explicit down cast. Literals treated
differently.
int i = 7;
char c1 = i; // compiler error
char c2 = 10; // no compiler error

ASIDE: Examples with char and short

char c = 'q';
short s = 2; allowed
int i = 3;

s = i; compile time error
s = (short) i;

s = c; compile time error
s = (short) c;

c = s; compile time error
c = (char) s; 36

narrowerwider

double
float
long
int
char
short
byte

64
32
64
32
16
16
8

number of bitstype

Examples with float and double

double y = 1/4; assigns value 0.0 to y

double x = 1; legal, but considered bad style

float y = 3.0; compiler error

float y = (float) 3.0; narrowing

float z = 3.0f;

37

Coming up…

Lectures

Fri. Jan 14
Java Overview (JRE, JDK, ...)

Next week
arrays, strings, objects & classes

Homework (TODO)

• w3schools Tutorial (this week!)

• Install either Eclipse or IntelliJ. (this week!)

• Content -> tutorials.

Tutorial (tomorrow)

• TA office hours

38

