COMP 250

Lecture 3

binary numbers (continued),
Java primitive types,
ascii, Unicode
casting

Wed. Jan. 12, 2022

Addition in binary

The addition and multiplication algorithms from lecture 1 are based on operators
+, *, /,% . These algorithms work for any base. (See lecture notes.)

For example,

11010

+ 01111
?

Addition in binary

The addition and multiplication algorithms from lecture 1 are based on operators
+, *, /,% . These algorithms work for any base. (See lecture notes.)

For example,

carry 111100
11010

+ 01111
101001

Addition in binary

Fun example:

11111111111
+ 00000000001
100000000000 youtube video of odometer at 100,000

Let’s use the example above to ask a fundamental question about
binary number representations (next slide).

Q: How many bits N do we need to represent a positive integer m in binary ?

N-1
m = 2 bi Zi
=0

What do we mean by “need”? We man using as few bits as possible, such that
by_1 =1 and b; =0 fori = N.

For example, we consider representations like (11010), but not (0000011010),

Assuming we are using as few bits as possible, suppose:

m = (by—1 .. Dbabsbybiby),
The smallest that m can be is the N bit number:

(100000 ... 000000), = ?

The largest that m can be is the N bit number:

(111111 ... 111111), =

Assuming we are using as few bits as possible, suppose:

m = (by—1 .. Dbabsbybiby),
The smallest that m can be is the N bit number:

(100000 ... 000000),

The largest that m can be is the N bit number:

(111111 ... 111111),

From the previous slide: 2N-1 < m < 2N

Take the log (base 2) of each of the three terms :

N—-1 < loggm < N

The inequality is still correct since the log function is strictly increasing.

From here, we can show:

N = floor(log, m)+1 where “floor” means “round down”.

m (decimal) _m (binary) N = floor(log, m)+1

0

1

10
11
100
101
110
111
1000
1001
1010
1011

o

Exact powers of
2 shown in red.

O OO U BHWN -

[N
o
DD D DWW W WNNE

—
C

ASIDE: How are numbers represented in a computer?

How are integers represented (both positive and negative) ?
How are fractional numbers represented ?
Surprisingly, the answers do not depend on the computer or language.

Rather, there is a standard format that is used by all computers.
(For fractional numbers, the format is the IEEE 754 standard.)

Java primitive types

byte
short
int
long
float
double
boolean

char

—_

integer values

|H

fractional (“real”) numbers

true orfalse
One character

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

These are reserved keywords.

11

Java variables : type declaration

We can declare a primitive type variable as follows.

i nt l ; i Java Tutorial

ava HOME

Java Data Types

ava Intro

ava Get Started : . < " <
As explained in the previous chapter, a variable in Java must be
ava Syntax

double X; X

ava Comments

ava Variables

J
J
J
J
J
J
J
J
J
J

Example
- . . Java Type Casting .
In order to use it, we need to assign it a value. i myn 5
) float myFloatNum = 5.99f // Floating point number
avalsings char myLetter = 'D' // Character
\ . Java Math boolean myBool = true // Boolean
l — 3 ; l 3 ava Booleans String myText = "Hello" // String

Java If__Else

X 4,75

x = 4.75;

We can declare and assign a value in a single statement.

false is 00000000
boolean b = false; b false true is 00000001

12

Java primitive types : what do they encode?

The number of bits used for each data type is fixed.

The bits can encode a particular set of values.

Keyword Size Values
byte 8-bits
short 16-bits
int 32-bits
long 64-bits
float 32-bits
double 64-bits
boolean 1-bit
char 16-bits

Java primitive types : what do they encode?

The number of bits used for each data type is fixed.

The bits can encode a particular set of values.

Keyword Size Values
byte 8-bits {(=27,..,27 -1}
short 16-bits (=215 ..,215 -1}

int 32-bits {(=231,..,231 -1}
long 64-bits {—2%3,.,2% — 1}
float 32-bits

double 64-bits

boolean 1-bit » {true, false}
char 16-bits

As | mentioned on slide 12, this uses 8 bits, but only the last bit matters

N bit integers

Recall the concept of modulus: like a Java represents “signed” integers.
circle, if you keep walking forward, The values on the circle go from
you get back to where you started. 0,1,...2N"1 — 1, and then jump back
With modulus operator, the circle is to —2N-1 —2N=-14.9 .. -1.
0,1,..,2N —1.

64 e.g. N=8 64
eg. N=8 (byte)

127
-128
-127

15

N bit integers

Recall the concept of modulus: like a Java represents “signed” integers.
circle, if you keep walking forward, The values on the circle go from
you get back to where you started. 0,1,...2N"1 — 1, and then jump back
With modulus operator, the circle is to —2N-1 —2N=-14.9 .. -1.
0,1,..,2N —1.
230 e.g. N=32 230
(int)
231 —1 1
231 0

16

“Overflow” and “Underflow” e.g. int

Variables of type int store integer values from —231 to 231 — 1.

231 _ 1 1
—231 = —2147483648 < minintvalue _p31 0
231 — 1= 2147483647 €& maxintvalue -1
Example of overflow : Example of underflow :
int x = 2147483647; (max) int y = -2147483648; (min)
System.out.println(x+1); System.out.println(y-1);

- prints -2147483648 (min) - prints 2147483647 (max)

17

Floating Point

In Java, fractional numbers are represented using “floating point”, similar to scientific
notation. e.g. 6.022149 x 1023

The type can be either f1oat (32 bits) or double (64 bits).
All standard arithmetic operations (+, -, *, /) can be done on floating point.

Java distinguishes between 1 and 1.0. If you write .0 after an integer, it will be
represented as a double. If you want to representa float, see below.

int x = 3.0; x x

float yv = 3.0;
int x = 3;

float v = 3.0£f;
double x = 3.0;

18

Floating point approximation (round off)

The value of 1/3.0 is an approximation only.
More surprising perhaps, the value of 1/10.0 is also an approximation only.

The reason is that computers only represent sums of powers of 2, including
negative powers of 2 (1/2.0, 1/4.0, 1/8.0, etc).

Here is an interesting example:
System.out.println(0.1 + 0.1 + 0.1 + 0.1 + 0.1 +
0.1 + 0.1 + 0.1 + 0.1 + 0.1);

It printsout 0.9999999999999999 ratherthan 1.0

char data type

We can declare and initialize a variable of type char as follows:

char letter = 'a';

Character literals appears in single quotes.

Character literals can only contain a single character. If you put two characters

inside quotes, then it is not a character but rather it is a string.

Escape Sequences

An escape sequence is a sequence of characters that represents a special character.
In Java, escape sequences are two characters and the first is a backslash.

Examples:

\n says to start a new line (e.g. when printing)
\" or \' represent quotation marks

\t represents atab

\\ represents a backslash

Escape sequences are legal characters. e.g. char ¢ = '"\n';

char data type

The char data type is two bytes (16 bits).

Think of them as numbered from 0to 2'® —1 (65,535).
A common notationis ‘\u----’ where the — places are hexadecimal digits.

i.e. the values of a char range from '"\u0000"' to "\uffff?

The first 27 = 128 of them correspond to the ASCII characters (next slide).

Decimal Hex Char

ASCII table

Decimal Hex Char

Decimal Hex Char

Decimal Hex Char

LoOoNOTU&EWNKHO

TMOO@POWONOITUVEWNREO

[NULL)

[START OF HEADING]
[START OF TEXT)

[END OF TEXT]

[END OF TRANSMISSION]
[ENQUIRY]
[ACKNOWLEDGE]
[BELL)

[BACKSPACE]
[HORIZONTAL TAB]
[LINE FEED]
[VERTICAL TAB]
[FORM FEED)]
[CARRIAGE RETURN)
[SHIFT OUT]

[SHIFT IN]

[DATA LINK ESCAPE]
[DEVICE CONTROL 1]
[DEVICE CONTROL 2)
[DEVICE CONTROL 3]
[DEVICE CONTROL 4]
[NEGATIVE ACKNOWLEDGE]
[SYNCHRONOUS IDLE]
[ENG OF TRANS. BLOCK]
[CANCEL]

[END OF MEDIUM]
[SUBSTITUTE]
[ESCAPE]

[FILE SEPARATOR]
[GROUP SEPARATOR]
[RECORD SEPARATOR]
[UNIT SEPARATOR]

32 20 [SPACE]
33 21 !
34 22 "
35 23 #
36 24 $
37 25 %
38 26 &
39 27 '
40 28 (
41 29)
42 2A *
43 2B -
44 2C '
45 2D

46 2E .
47 2F /
48 30 (1]
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A 3
59 38 ;
60 3C <
61 3D =
62 3E >
63 3F ?

64
65
66
67

YT N<XXS<CHUIOTVOZZIrA“"IOTMTMOO®PE

60
61
62
63

I~ AN Xg<CcrT"WIogTOo33~x" = Ta="0anocw

[DEL]
23

Unicode

The char data uses Unicode which is an international standard.

Unicode is a superset of ASCII: the numbers 0-127 map to the same characters both
in ASCIl and Unicode.

Unicode provides the fonts for many languages. It also encodes emoji’s.

ASIDE: there’s more to Unicode than this: you can expand beyond 21 symbols
by having pairs of char where the first one is essentially an escape character.

When we say that ASCIl and Unicode are “codes”, we mean that
each character or symbol is represented by a sequence of bits.

But we know sequences of bits also represent numbers!

In Java, we can perform arithmetic with char values e.g.:

char c

int

k

'al;

C

|

e

//
//

97
983

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
137
118
119
120
121
122
123
124
125
126
127

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
(K]
78
79
TA
7B
[i®
7D
7E
7F

25

| AN X s<C™T®O ".Q'UO:B‘R‘"":’\Q"‘@ QnNnoTo

[
L

—~

DEL]

Comparing Chars

We can also compare char values using operators ==, <,>,> =, <= which
essentially compares their code values.

char letter0 = 'g';
char letterl = 'k';
System.out.println(letter0 < letterl); // prints true
System.out.println('g' < 'G'); // prints false

System.out.println('$' >= '&'); // prints false

Type casting

Convert the values of variables from one type to another using type casting.

double y = 4.56;

int n = (int) vy; // value of n is ?2?2?27?27?°7

int X = 33

double z = (double) x; // value of z is 222?227

Type casting

Convert the values of variables from one type to another using type casting.

double y = 4.56;

int n = (int) vy; // value of n is 4 (rounds down)
int X = 33
double z = (double) x; // value of z is 3.0

\

As we will see next, an explicit cast is unnecessary here. 28

Primitive type conversion — wider vs. harrower

wider
implicit cast

“Wider” usually (but not
always) means more bits.

type

double
float
long
int

byte

number of bits

64
32
64
32

narrower
explicit cast is needed

29

Examples of widening & narrowing

d = 1i; widening (“implicit casting”) = stores value 3.0

i = d; X compile time error

i = (int) d; narrowing (“explicit casting”) = stores value 4

30

" Examples of widening & narrowing

int 1 = 3;
double d = 4.2;

d= 5.3 * 1i; widening by "promotion”

byte k = 127;
System.out.println(k + 1);

Output: 128

widening by "promotion” (to integer)

31

Recall: Overflow and Underflow e.g. byte

How is 127 represented asabyte?

(01111111), = 127

What happens if we add 17
(1000 0000), = —128

32

Overflow and Underflow e.g. byte

Recall that variables of type byte store values between —27 and 27 — 1,
thatis, —128 and 127.

Overflow: Underflow:
byte k = 127; byte 3 = -128; .
System.out.println (k+1); System.out.pr}ntln(]—l); |
System.out.println((byte) (k+1)); System.out.println ((byte) (3-1));
Output: Output:

128 (widening by promotion) -129 (widening by promotion)

-128 (cast, narrowing) 127 (cast, narrowing) .

Examples of widening & narrowing

char first = 'a'; // 97
char second = (char) (first + 1);

first isautomatically convertedintoan int when
performing first + 1 , which evaluates to 98.
(widening by promotion)

This int valueis castto char (narrowing), and 'b"' is
stored in second.

I~ AN Xs<crr@o0TOoORg XU TTOQNOIRNDTY

97 61
98 62
99 63
100 64
101 65
102 66
103 67
104 68
105 69
106 6A
107 6B
108 6C
109 6D
110 6E
111 6F
112 70
113 71
114 72
115 73
116 74
117 75
118 76
119 77
120 78
121 79
122 A
123 78
124 7C
125 7D
126 7E
127 7F [

—

DEL ;'

34

Posted late in course... followup

Hello,
| was wondering why it is legal (and runs as intended) to write char ¢ = 10; ?

Since we are narrowing (int type to char type), shouldn't we need to use explicit casting (char c =
(char) 10;)?
Thank you very much!

Comment Edit Delete Endorse e+s

It seem Eclipse and IDEA don’t require an explicit down cast. Literals treated
differently.

inti=7;
char cl =1i; // compiler error
char c2 = 10; // no compiler error

ASIDE: Examples with char and short

'

char ¢ = 'qg';
‘ type number of bits
short s = 2; allowed N
int i = 3; double 64
float 32
wider long 64 narrower
s = 1i; X compile time error Int 32
s = (short) 1;
byte 8
s = c; X compile time error
s = (short) c;
c = s; X compile time error

c = (char) s; 36

Examples with f1loat and double

I
'—\
~
AN
-

double vy assigns value 0.0 toy
double x = 1;

float y = 3.0;)‘ compiler error
float y = (float) 3.0; narrowing

float z = 3.0f;

Coming up...

Lectures

Homework (TODO)

Fri. Jan 14
Java Overview (JRE, JDK, ...)

Next week

arrays, strings, objects & classes

w3schools Tutorial (this week!)

Install either Eclipse or Intelli). (this week!)

Content -> tutorials.

Tutorial (tomorrow)

TA office hours

38

