COMP 250

Lecture 3

binary numbers (continued),
Java primitive types, ascii, Unicode
casting

Wed. Jan. 12, 2022

Addition in binary

The addition and multiplication algorithms from lecture 1 are based on operators +, *, / , \% . These algorithms work for any base. (See lecture notes.)
For example,

Addition in binary

The addition and multiplication algorithms from lecture 1 are based on operators $+, *, /, \%$. These algorithms work for any base. (See lecture notes.)
For example,

Addition in binary

Fun example:

$$
\begin{array}{r}
11111111111 \\
+\quad 00000000001 \\
\hline 100000000000
\end{array}
$$

Let's use the example above to ask a fundamental question about binary number representations (next slide).

Q: How many bits N do we need to represent a positive integer m in binary ?

$$
m=\sum_{i=0}^{N-1} b_{i} 2^{i}
$$

What do we mean by "need"? We man using as few bits as possible, such that $b_{N-1}=1$ and $b_{i}=0$ for $i \geq N$.

For example, we consider representations like $(11010)_{2}$ but not $(0000011010)_{2}$

Q: How many bits N do we need to represent a positive integer m in binary ?

Assuming we are using as few bits as possible, suppose:

$$
m=\left(\begin{array}{lll}
b_{N-1} & \ldots & \left.b_{4} b_{3} b_{2} b_{1} b_{0}\right)_{2}
\end{array}\right.
$$

The smallest that m can be is the N bit number:

$$
(100000 \quad \ldots \quad 000000)_{2}=?
$$

The largest that m can be is the N bit number:

$$
(111111 \quad \ldots \quad 111111)_{2}=?
$$

Q: How many bits N do we need to represent a positive integer m in binary ?

Assuming we are using as few bits as possible, suppose:

$$
m=\left(b_{N-1} \quad \ldots \quad b_{4} b_{3} b_{2} b_{1} b_{0}\right)_{2}
$$

The smallest that m can be is the N bit number:

$$
\left(\begin{array}{lll}
100000 & \ldots & 000000
\end{array}\right)_{2}=2^{N-1}
$$

The largest that m can be is the N bit number:

$$
\left(\begin{array}{lll}
111111 & \ldots & 111111
\end{array}\right)_{2}=2^{N}-1
$$

From the previous slide: $\quad 2^{N-1} \leq m<2^{N}$

Take the \log (base 2) of each of the three terms :

$$
N-1 \leq \log _{2} m<N
$$

The inequality is still correct since the log function is strictly increasing.

From here, we can show:

$$
N=f l o o r\left(\log _{2} m\right)+1 \text { where "floor" means "round down". }
$$

\underline{m} (decimal)		m (binary)	$N=f l o o r\left(\log _{2} m\right)+1$
	0	0	undefined
	1	1	1
	2	10	2
	3	11	2
Exact powers of	4	100	3
2 shown in red.	5	101	3
	6	110	3
	7	111	3
	8	1000	4
	9	1001	4
	10	1010	4
	11	1011	4
	:	:	:

ASIDE: How are numbers represented in a computer?

How are integers represented (both positive and negative) ?

How are fractional numbers represented ?

Surprisingly, the answers do not depend on the computer or language.
Rather, there is a standard format that is used by all computers.
(For fractional numbers, the format is the IEEE 754 standard.)

The technical details are covered in detail in COMP 273 - see my lecture notes for that course if you are curious. I will say a bit about how integers are represented a few slides from now.

Java primitive types

byte short int long float double boolean char
integer values

fractional ("real") numbers
true or false

One character

https://docs.oracle.com/iavase/tutorial/java/nutsandbolts/datatypes.html

These are reserved keywords.

Java variables : type declaration

We can declare a primitive type variable as follows.

int	i;	i	\square
double	$x i$	x	\square

In order to use it, we need to assign it a value.

$$
\begin{aligned}
& i=3 ; \\
& x=4.75 ;
\end{aligned}
$$

Java Data Types
As explained in the previous chapter, a variable in Java must be

Example

int myNum = 5;
float myFloatNum $=5.999$
char myletter = ' D '.
boolean myBool = true
string myText = "Hello"; // Boole

We can declare and assign a value in a single statement.

$$
\text { boolean } \mathrm{b}=\text { false; } \quad \mathrm{b} \text { false false is } 00000000
$$

Java primitive types : what do they encode?

The number of bits used for each data type is fixed. The bits can encode a particular set of values.

Keyword	Size	Values
byte	8-bits	
short	16-bits	
int	32-bits	
long	64-bits	
float	32-bits	
double	64-bits	
boolean	1-bit	
char	16-bits	

Java primitive types : what do they encode?

The number of bits used for each data type is fixed. The bits can encode a particular set of values.

Keyword	Size	Values
byte	8-bits	$\left\{-2^{7}, \ldots, 2^{7}-1\right\}$
short	16-bits	$\left\{-2^{15}, \ldots, 2^{15}-1\right\}$
int	32 -bits	$\left\{-2^{31}, \ldots, 2^{31}-1\right\}$
long	64 -bits	$\left\{-2^{63}, \ldots, 2^{63}-1\right\}$
float	32-bits	COMP 273/ECSE 222
double	64-bits	COMP 273/ECSE 222
boolean	1-bit	\{true, false $\}$
char	16-bits	later today

As I mentioned on slide 12, this uses 8 bits, but only the last bit matters

N bit integers

Recall the concept of modulus: like a circle, if you keep walking forward, you get back to where you started. With modulus operator, the circle is $0,1, \ldots, 2^{N}-1$.

$$
64
$$

e.g. $N=8$

Java represents "signed" integers.
The values on the circle go from
$0,1, \ldots .2^{\mathrm{N}-1}-1$, and then jump back to $-2^{\mathrm{N}-1},-2^{\mathrm{N}-1}+1, \ldots . .-1$.
e.g. $\mathbf{N}=8 \quad 64$
(byte)

N bit integers

Recall the concept of modulus: like a circle, if you keep walking forward, you get back to where you started. With modulus operator, the circle is
$0,1, \ldots, 2^{N}-1$.
e.g. $N=32$

Java represents "signed" integers.
The values on the circle go from
$0,1, \ldots .2^{\mathrm{N}-1}-1$, and then jump back to $-2^{\mathrm{N}-1},-2^{\mathrm{N}-1}+1, \ldots . .-1$.

"Overflow" and "Underflow" e.g. int

Variables of type int store integer values from -2^{31} to $2^{31}-1$.

$$
\begin{array}{rrr}
-2^{31} & =-2147483648 & \leftarrow \min \text { int value } \\
2^{31}-1 & =2147483647 & \leftarrow \max \text { int value }
\end{array}
$$

Example of overflow :

```
int x = 2147483647; (max)
System.out.println(x+1);
-> prints -2147483648 (min)
```

Example of underflow :

```
int y = -2147483648; (min)
System.out.println(y-1);
| prints 2147483647
    (max)
```


Floating Point

- In Java, fractional numbers are represented using "floating point", similar to scientific notation. e.g. 6.022149×10^{23}
- The type can be either float (32 bits) or double (64 bits).
- All standard arithmetic operations (+, -, *, /) can be done on floating point.
- Java distinguishes between 1 and 1.0. If you write .0 after an integer, it will be represented as a double. If you want to represent a float, see below.

```
int x = 3.0; N
int x = 3;
double x = 3.0;
```

```
float y = 3.0;
float y = 3.0f;
```


Floating point approximation (round off)

The value of $1 / 3.0$ is an approximation only.
More surprising perhaps, the value of $1 / 10.0$ is also an approximation only.
The reason is that computers only represent sums of powers of 2, including negative powers of $2(1 / 2.0,1 / 4.0,1 / 8.0$, etc).
Here is an interesting example:

```
System.out.println(0.1 + 0.1 + 0.1 + 0.1 + 0.1 +
    0.1+0.1+0.1+0.1+0.1 );
```

It prints out 0.9999999999999999 rather than 1.0

char data type

We can declare and initialize a variable of type char as follows:

```
char letter = 'a';
```

- Character literals appears in single quotes.
(A 'literal' is a particular character, string, or number.)

Character literals can only contain a single character. If you put two characters inside quotes, then it is not a character but rather it is a string.

Escape Sequences

An escape sequence is a sequence of characters that represents a special character. In Java, escape sequences are two characters and the first is a backslash.

Examples:
$\backslash \mathrm{n}$ says to start a new line (e.g. when printing)
\backslash " or \' represent quotation marks
\t represents a tab

 represents a backslash

Escape sequences are legal characters. e.g. char $c=$ '\n';

char data type

The char data type is two bytes (16 bits).

Think of them as numbered from 0 to $2^{16}-1 \quad(65,535)$.
A common notation is ' $\backslash u----$ ' where the - places are hexadecimal digits.
i.e. the values of a char range from ' $\backslash u 0000$ ' to '\uffff'

The first $2^{7}=128$ of them correspond to the ASCII characters (next slide).

ASCII table

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	-
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	,	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	I	105	69	,
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	J
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4 C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2 F		79	4F	0	111	6 F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1 A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3 B	;	91	5B	[123	7 B	\{
28	1 C	[FILE SEPARATOR]	60	3 C	<	92	5C	1	124	7 C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1 E	[RECORD SEPARATOR]	62	3 E	$>$	94	5 E	ヘ	126	7E	\sim
31	1 F	[UNIT SEPARATOR]	63	3 F	?	95	5 F	-	127	7F	[DEL]

Unicode

The char data uses Unicode which is an international standard.

Unicode is a superset of ASCII: the numbers 0-127 map to the same characters both in ASCII and Unicode.

Unicode provides the fonts for many languages. It also encodes emoji's.

ASIDE: there's more to Unicode than this: you can expand beyond 2^{16} symbols by having pairs of char where the first one is essentially an escape character.

When we say that ASCII and Unicode are "codes", we mean that each character or symbol is represented by a sequence of bits.

But we know sequences of bits also represent numbers!
In Java, we can perform arithmetic with char values e.g.:

```
char c = 'a'; // 97
int k = c + 1; // 98
```

97	61	a
98	62	b
99	63	c
100	64	d
101	65	e
102	66	f
103	67	g
104	68	h
105	69	i
106	6A	j
107	6B	k
108	6C	1
109	6D	m
110	6E	n
111	6F	-
112	70	p
113	71	q
114	72	r
115	73	s
116	74	t
117	75	u
118	76	v
119	77	w
120	78	x
121	79	y
122	7A	z
123	7B	\{
124	7 C	1
125	7D	\}
126	7E	\sim
127	7F	[DEL]

Comparing Chars

We can also compare char values using operators $==,<,>,\rangle=,<=$ which essentially compares their code values.

```
char letter0 = 'g';
char letter1 = 'k';
System.out.println( letter0 < letter1 ); // prints true
System.out.println( 'g' < 'G' ); // prints false
System.out.println( '%' >= '&' ); // prints false
```


Type casting

Convert the values of variables from one type to another using type casting.

```
double y = 4.56;
int n = (int) y; // value of n is ??????
int }x=3
double z = (double) x; // value of z is ??????
```


Type casting

Convert the values of variables from one type to another using type casting.

```
double y = 4.56;
int n = (int) y; // value of n is 4 (rounds down)
int }x=3
double z = (double) x; // value of z is 3.0

\section*{Primitive type conversion - wider vs. narrower}
\begin{tabular}{|c|c|c|c|}
\hline & type & ber of & \\
\hline & \multicolumn{2}{|l|}{deuble} & \\
\hline & float & 32 & \\
\hline wider & long & 64 & narrower \\
\hline  & int & 32 &  \\
\hline implicit cast & char & 16 & explicit cast is needed \\
\hline & short & 16 & \\
\hline "Wider" usually (but not & byte & 8 & \\
\hline
\end{tabular}
char and short are special ... see later.

\section*{Examples of widening \& narrowing}
```

int i = 3;
double d = 4.2;
d = i;
widening ("implicit casting") }->\mathrm{ stores value 3.0
i = d;
i = (int) d;
X compile time error
narrowing ("explicit casting") \rightarrow stores value 4

```

\section*{" Examples of widening \& narrowing}
```

int i = 3;
double d = 4.2;
d = 5.3 * i; widening by"promotion"
(the casting here happens when the * operation is performed)
byte k = 127;
System.out.println(k + 1); widening by "promotion" (to integer)
(the casting here happens when the + operation is performed)

```

Output: 128

\section*{Recall: Overflow and Underflow e.g. byte}

How is 127 represented as a byte ?
\[
(01111111)_{2}=127
\]

What happens if we add 1 ?
\((10000000)_{2}=-128\)


\section*{Overflow and Underflow e.g. byte}

Recall that variables of type byte store values between \(-2^{7}\) and \(2^{7}-1\), that is, -128 and 127.

Overflow:
```

byte k = 127;
System.out.println(k+1);
System.out.println((byte) (k+1));

```

Output:
128
\(-128\)
(widening by promotion)
(cast, narrowing)

Underflow:
```

byte j = -128;
System.out.println(j-1);
System.out.println((byte) (j-1));

```

Output:
-129 (widening by promotion)
127 (cast, narrowing)

\section*{Examples of widening \& narrowing char}
char first = 'a'; // 97
char second \(=\) (char) (first +1 );
first is automatically converted into an int when performing first + 1 , which evaluates to 98. (widening by promotion)

This int value is cast to char (narrowing), and 'b ' is stored in second.
\begin{tabular}{|c|c|c|}
\hline 97 & 61 & a \\
\hline 98 & 62 & b \\
\hline 99 & 63 & c \\
\hline 100 & 64 & d \\
\hline 101 & 65 & e \\
\hline 102 & 66 & f \\
\hline 103 & 67 & g \\
\hline 104 & 68 & h \\
\hline 105 & 69 & i \\
\hline 106 & 6A & j \\
\hline 107 & 6B & k \\
\hline 108 & 6C & 1 \\
\hline 109 & 6 D & m \\
\hline 110 & 6 E & n \\
\hline 111 & 6 F & - \\
\hline 112 & 70 & p \\
\hline 113 & 71 & q \\
\hline 114 & 72 & r \\
\hline 115 & 73 & 5 \\
\hline 116 & 74 & t \\
\hline 117 & 75 & u \\
\hline 118 & 76 & \(v\) \\
\hline 119 & 77 & w \\
\hline 120 & 78 & x \\
\hline 121 & 79 & y \\
\hline 122 & 7A & z \\
\hline 123 & 7B & 1 \\
\hline 124 & 7 C & 1 \\
\hline 125 & 7 D & , \\
\hline 126 & 7E & \(\sim\) \\
\hline 127 & 7F & [DEL] \\
\hline
\end{tabular}

\section*{Posted late in course... followup}
```

Hello,
I was wondering why it is legal (and runs as intended) to write char c = 10; ?
Since we are narrowing (int type to char type), shouldn't we need to use explicit casting (char c=
(char) 10;)?
Thank you very much!
Comment Edit Delete Endorse ...

```

It seem Eclipse and IDEA don't require an explicit down cast. Literals treated differently.
int \(\mathrm{i}=7\);
char c1 = i ; // compiler error
char c2 = 10; // no compiler error

\section*{ASIDE: Examples with char and short}
```

char c = 'q';
short s = 2; \ allowed
int i = 3;
s = i; X compile time error
s = (short) i;
s = C; X compile time error
s = (short) c;
c = s;
c = (char) s;
| double 64
wider
float 32
long 64
int 32
char 16
short 16
byte 8

Examples with float and double

```
double y = 1/4;
double x = 1;
float y = 3.0; X
float y = (float) 3.0;
float z = 3.0f;
```

assigns value 0.0 to y
legal, but considered bad style
compiler error
narrowing

Coming up...

Lectures	Homework (TODO)
Fri. Jan 14 Java Overview (JRE, JDK, ...) Next week arrays, strings, objects \& classes	- w3schools Tutorial (this week!) - Install either Eclipse or IntelliJ. (this week!) - Content -> tutorials. Tutorial (tomorrow) - TA office hours

