
1

COMP 250

Lecture 29

maps

March 21, 2022

Map (Mathematics)

2

“domain” “codomain”

A map is a set of pairs { (x, f(x)) }.

Each x in domain maps to some f(x) in codomain.

Math examples

3

Calculus 1 and 2 (“functions”):

Maps in everyday life

4map(x,y) : position in 2D image  2D position in Montreal

Color map

5

vote_result : US_state  { blue(Dem), red(Rep) }

Restaurant Menu

6

menu : dish_name  price

Train Schedule

7
Schedule : station  time of next train (or list of times)

Index in a book

8
index : term  list of pages containing term

Map (ADT)

9

keys (type K) values (type V)

A map is a set of (key, value) pairs.
For each key, there is at most one value.

Map (ADT)

10

keys (type K) values (type V)

Two keys can map to the same value.

Map (ADT)

11

keys (type K) values (type V)

It is NOT allowed that one key maps to two different values.
The above example is NOT a map.

Map Entry

12

keys (type K) values (type V)

Each (key, value) pair is called an entry.

In this example, there are four entries.

The black dots here indicate keys or values that are not in the map.

Example

13

In COMP 250 this semester, the above mapping has ~600 entries.

Most McGill students are not taking COMP 250 this semester.

BTW, the student ID can also be part of the student record.

Student IDs Student records

Map ADT

• put(key, value)

• get(key)

• remove(key)

• …

14

Map ADT

• put(key, value)

• get(key)

• remove(key)

• …

15

If the map previously contained a mapping for the key,
then the old value is replaced by the specified value,
and the previous value is returned. Otherwise, return null.

Map ADT

• put(key, value)

• get(key)

• remove(key)

• …

16

Returns the value to which the specified key is mapped,
or return null if this map contains no entry for the key.

Map ADT

• put(key, value)

• get(key)

• remove(key)

• …

17

Removes the entry for the key, if it is present, and returns
the value. Returns null if the map contains no mapping
for the key.

About the figures....

18

When programming with maps in Java, keys and value variables
are reference types. On this slide, the keys as different sized
red disks and the values are blue shapes.

In this example, two of the keys map to the same value.

About the figures....

19

For the remaining slides today, I will draw a set of (key, value)
pairs, i.e. entries, as shown below.
But try to keep the previous slide in mind...

Data Structures for Maps ?

20

How to organize a set of (key, value) pairs, i.e. entries ?

Array list

21

0
1
2
3
4

null
null

put(key, value)
get(key)
remove(key)

How would you implement these operations?
What are the best and worst case time complexities ?

Singly (or Doubly) linked list

22

head

tail

put(key, value)
get(key)
remove(key)

How would you implement these operations?
What are the best and worst case time complexities ?

23

Special case #1: what if keys are comparable ?

Can we take advantage of this?

Array list (sorted by key)

24

0
1
2
3
4

null
null

put(key,value)
get(key)
remove(key)

How would you implement these operations?
What are the best and worst case time complexities ?

Binary Search Tree (“sorted” by key)

25

put(key,value)
get(key)
remove(key)

How would you implement these operations?
What are the best and worst case time complexities ?

When I presented BSTs, I only
mentioned the keys. The nodes could
instead store key/value pairs and the
BST algorithms would still work fine.

minHeap (priority defined by key)

26

put(key,value)
get(key)
remove(key)

How would you implement these operations?
What are the best and worst case time complexities ?

Special case #1: what if keys are comparable ?

Special case #2: what if keys are positive integers in a small range ?

27

Then, we could use an array with
elements of type V (value) and have
O(1) access.

This would not work well if keys are 9
digit student IDs. Why not?

4

9

12

22

3

6

8

14

28

Special case #1: what if keys are comparable ?

Special case #2: what if keys are positive integers in small range ?

General case. What if keys are some other type ?

We will define a map from keys to a large range of positive integers.
Such a map is called a hash code.

Next we will look at Java’s hashCode() method.

Then, next lecture, I will tell you how to use this hash code.

Recall lecture 13:
Object.hashCode()

29

class Object

+ Object()

+ equals(Object) : boolean
clone() : Object
+ hashCode() : int
+ toString() : String

:

Returns a (positive) integer.

You can think of it as the
address of the object,
although this is not required
in any technical sense.

Object.hashcode()

30

objects in a Java
program (runtime)

object’s address in JVM memory
(24 bits)

If obj1 and obj2 are reference variables, and if the objects
that they reference inherit the Object.hashCode() method,
then obj1.hashcode() == obj2.hashcode()

is equivalent to obj1 == obj2.

1-to-1

(not many-to-1)

String.hashcode()

31

Strings int (32 bit)

How is String.hashcode() defined?

Example of a simpler hash code for strings

32

(not the definition of String.hashCode())

is the first character in the sequence, is second, etc.

e.g.

ASCII values of ‘a’, ‘e’, ‘t’ are 97, 101, 116.

=

Unicode (16 bit)

String.hashcode()

33

s.hashCode()

where = 31.

e.g. s = “eat”, s.hashcode()= 101 * + 97 * + 116

s.length = 3 s[0] s[1] s[2]

‘e’ ‘a’ ‘t’

String.hashcode()

34

s.hashCode()

where = 31.

e.g. s = “ate”, s.hashcode() = 97 * + 116 * + 101

s.length = 3 s[0] s[1] s[2]

‘a’ ‘t’ ‘e’

35

String.hashcode()

36

s.hashCode()

Q: If s1.hashCode() == s2.hashCode()
then can we conclude s1.equals(s2) is true ?

A: No. s1.equals(s2) may be either true or false.

s1.hashCode() == s2.hashCode() is true, but s1.equals(s2) is false

intString

String.hashcode()

37

s.hashCode()

Q: If s1.hashCode() != s2.hashCode()
then what can we conclude about s1.equals(s2) ?

A: s1.equals(s2) is false.

ASIDE: Java uses “Horner’s rule”
for efficient polynomial evaluation

38

s[0] * + s[1] * + s[2]* + s[3]

There is no need to compute each separately.

ASIDE: Java uses “Horner’s rule”
for efficient polynomial evaluation

39

s[0] * + s[1] * + s[2]* 31 + s[3]

= (s[0] * + s[1] * + s[2]) * 31 + s[3]

= ((s[0] * + s[1] + s[2]) * 31 + s[3]

h = 0
for (i = 0; i < i++)

h = h*31 + [i]

For a degree polynomial, Horner’s rule uses O(n) multiplications, not O(ଶ).

Coming up…

Lectures

Wed 23

Hashing

Fri. March 25

Graphs 1

Assessments

Assignment 4 will be posted
Wednesday, hopefully.

40

