COMP 250

Lecture 29

maps
March 21, 2022

Map (Mathematics)

"domain"
"codomain"

A map is a set of pairs $\{(x, f(x))\}$.
Each x in domain maps to some $f(x)$ in codomain.

Math examples

Calculus 1 and 2 ("functions"):

$$
f(x): \quad \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}
$$

Maps in everyday life

$\operatorname{map}(\mathrm{x}, \mathrm{y}):$ position in 2D image \rightarrow 2D position in Montreal ${ }_{4}$

Color map

vote_result: US_state \rightarrow \{blue(Dem), red(Rep) \}

Restaurant Menu

Poulet au cari vert \& lait de coco it	18.95
Chicken in green curry \& coconut milk	
Poulet au cari jaune \& lait de coco il	18.95
Chicken in yellow curry \& coconut milk	
Poulet au cari paneang \& lait de coco 11	18.95
Chicken in paneang curry \& coconut milk	
Poulet sauté aux oignons et piments forts '11	18.95
Chicken sauteed with onions \& chillies	
Poulet sauté au basilic thaillandais 111	18.95
Chicken sauteed with thai basil	
Poulet sauté aux noix de cajou 1	18.95
Chicken sauteed with cashew nuts	
Poulet sauté aux aubergines it	18.95
Chicken sauteed with eggplants	
Poulet sauté aux haricots verts it	18.95
Chicken sauteed with green beans	
Poulet sauté aux pousses de bambou i1	18.95
Chicken sautéed with bamboo shoots	
Poulet sauté au brocoli \& sauce aux huitres	18.95
Chicken sauteed with broccoli \& oyster sauce	

menu: dish_name \rightarrow price
Poulet sauté aux noix de cajou $1 \quad 18.95$
Chicken sautéed with cashew nuts
Poulet sauté aux aubergines it
18.95

Poulet sauté aux haricots verts it 18.95
Chicken sautéed with green beans
Poulet sauté aux pousses de bambou 11 18.95

Chicken sautéed with broccoli \& oyster sauce

Train Schedule

Schedule : station \rightarrow time of next train (or list of times)

Index in a book

edge, 310
destination, 613
endpoint, 613
incident, 613
multiple, 614
origin, 613
outgoing, 613
parallel, 614
self-loop, 614
edge list, 619-621
edge of a graph, 612
edge relaxation, 653
edit distance, 608
element uniqueness problem,
174-175, 215
encapsulation, 62
encryption, 115
endpoints, 613
enum, 22
equals method, 25, 138-140
equivalence relation, 138
equivalence testing, 138-140
erasure, 140
Error class, 86, 87
Euclidean norm, 56
Euler tour of a graph, 677, 681
Euler tour tree traversal,
348-349, 358
favorites list, 294-299
FavoritesList class, 295-296
FavoritesListMTF class, 298, 399
Fibonacci heap, 659
Fibonacci series, 73, 180, 186, 216-217, 480
field, 5
FIFO, see first-in, first-out
File class, 200
file system, 198-201, 310, 345
final modifier, 11
first-fit algorithm, 692
first-in, first-out (FIFO) protocol, 238, 255, 336, 360, 699-700
Flajolet, Philippe, 188
Flanagan, David, 57
floor function, 163, 209
flowchart, 31
Floyd, Robert, 400, 686
Floyd-Warshall algorithm,
644-646, 686
for-each loop, 36, 283
forest, 615
fractal, 193
fragmentation of memory, 692
frame, 192, 688
adjacency list, 619,
622-623
adjacency map, 619, 624. 626
adjacency matrix, 619,625
edge list, 619-621
depth-first search, 631-639
directed, 612, 613, 647-649
mixed, 613
reachability, 643-646
shortest paths, 651-661
simple, 614
strongly connected, 615
traversal, 630-642
undirected, 612, 613
weighted, 651-686
greedy method, 597, 652, 653
Guava library, 448
Guibas, Leonidas, 530
Guttag, John, 101, 256, 305

Harmonic number, 171, 221
hash code, 411-415
cyclic-shift, 413-414
polynomial, 413, 609
hash table, 410-427
clustering, 419
collision, 411
index : term \rightarrow list of pages containing term

Map (ADT)

A map is a set of (key, value) pairs.
For each key, there is at most one value.

Map (ADT)

Two keys can map to the same value.

Map (ADT)

It is NOT allowed that one key maps to two different values. The above example is NOT a map.

Map Entry

Each (key, value) pair is called an entry.
In this example, there are four entries.
The black dots here indicate keys or values that are not in the map.

Example

In COMP 250 this semester, the above mapping has ~ 600 entries.
Most McGill students are not taking COMP 250 this semester.
BTW, the student ID can also be part of the student record.

Map ADT

- put(key, value)
- get(key)
- remove(key)
- ...

Map ADT

- put(key, value)

If the map previously contained a mapping for the key, then the old value is replaced by the specified value, and the previous value is returned. Otherwise, return null.

- get(key)
- remove(key)

Map ADT

- put(key, value)
- get(key)

Returns the value to which the specified key is mapped, or return null if this map contains no entry for the key.

- remove(key)

Map ADT

- put(key, value)
- get(key)
- remove(key)

Removes the entry for the key, if it is present, and returns the value. Returns null if the map contains no mapping for the key.

About the figures....

When programming with maps in Java, keys and value variables are reference types. On this slide, the keys as different sized red disks and the values are blue shapes.

In this example, two of the keys map to the same value.

About the figures....

For the remaining slides today, I will draw a set of (key, value) pairs, i.e. entries, as shown below.
But try to keep the previous slide in mind...

Data Structures for Maps ?

How to organize a set of (key, value) pairs, i.e. entries ?

0

\square
0

0

0
\square

Array list

put(key, value)
get(key) remove(key)

How would you implement these operations? What are the best and worst case time complexities ?

Singly (or Doubly) linked list

put(key, value)
get(key)
remove(key)

How would you implement these operations? What are the best and worst case time complexities ?

Special case \#1: what if keys are comparable ?
Can we take advantage of this?

Array list (sorted by key)

How would you implement these operations? What are the best and worst case time complexities ?

Binary Search Tree ("sorted" by key)

$\left.\begin{array}{l}\text { put(key,value) } \\ \text { get(key) } \\ \text { remove(key) }\end{array}\right\}$

How would you implement these operations? What are the best and worst case time complexities ?

minHeap (priority defined by key)

How would you implement these operations? What are the best and worst case time complexities ?

Special case \#1: what if keys are comparable ?

Special case \#2: what if keys are positive integers in a small range ?

Then, we could use an array with elements of type V (value) and have O(1) access.

This would not work well if keys are 9 digit student IDs. Why not?

4

9

12

22

Special case \#1: what if keys are comparable ?

Special case \#2: what if keys are positive integers in small range ?

General case. What if keys are some other type ?

We will define a map from keys to a large range of positive integers. Such a map is called a hash code.

Next we will look at Java's hashCode () method.

Then, next lecture, I will tell you how to use this hash code.

Recall lecture 13: Object.hashCode()

class Object

+ Object()
+ equals(Object) : boolean
\# clone() : Object
+ hashCode() : int
Returns a (positive) integer.
You can think of it as the address of the object,
although this is not required in any technical sense.

Object.hashcode()

objects in a Java program (runtime)
object's address in JVM memory (24 bits)

If obj1 and obj2 are reference variables, and if the objects that they reference inherit the Object. hashCode () method, then obj1.hashcode() == obj2.hashcode() is equivalent to obj1 == obj2.

String.hashcode ()

How is String.hashcode() defined?

Example of a simpler hash code for strings
(not the definition of String.hashCode())

$$
h(s) \equiv \sum_{i=0}^{\text {s.length }-1} s[i]
$$

$s[0]$ is the first character in the sequence, $s[1]$ is second, etc.
e.g. $\quad h($ "eat" $)=h($ "ate" $)=h($ "tea")

ASCII values of ' a ', 'e', 't' are 97, 101, 116.

String.hashcode()

S.hashCode () $\equiv \sum_{i=0}^{\text {s.length }-1} s[i] * x^{\text {s.length }-1-i}$
where $x=31$.

$$
\begin{gathered}
\text { e.g. } s=\text { "eat", } \mathrm{s} \text {.hashcode }()= \\
\\
\\
\text { s.length }=3
\end{gathered}
$$

String.hashcode()

s.hashCode () $\equiv \sum_{i=0}^{\text {s.length-1 }} s[i] * x^{\text {s.length }-1-i}$
where $x=31$.

$$
\begin{aligned}
& \text { e.g. } s=\text { "ate", s.hashcode (})=97 * 31^{2}+116 * 31+101 \\
& \text { 'a' } \\
& \text { ' } \mathrm{t} \text { ' } \\
& \text { 'e' } \\
& \text { s.length }=3 \\
& \mathrm{~s}[0] \\
& \mathrm{s} \text { [1] } \\
& \mathrm{s} \text { [2] }
\end{aligned}
$$

$\leftarrow \rightarrow \mathrm{C}$ docs.oracle.com/javase/8/docs/api/java/lang/String.htm|\#hashCode--

hashCode

public int hashCode()
Returns a hash code for this string. The hash code for a String object is computed as

```
s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
```

using int arithmetic, where s[i] is the i th character of the string, n is the length of the string, and ${ }^{\wedge}$ indicates exponentiation. (The hash value of the empty string is zero.)

Overrides:

hashCode in class Object

Returns:

a hash code value for this object.

String.hashcode()

s.hashCode () $\equiv \sum_{i=0}^{\text {s.length-1 }} s[i] *(31)^{\text {s.length }-1-i}$

Q: If s1.hashCode() == s2.hashCode() then can we conclude s1.equals(s2) is true?

A: No.s1.equals (s2) may be either true or false.

s1.hashCode() == s2.hashCode() is true, but s1.equals(s2) is false

String.hashcode()

s.hashCode () $\equiv \sum_{i=0}^{\text {s.length-1 }} s[i] *(31)^{\text {s.length }-1-i}$

Q: If s1.hashCode() != s2.hashCode() then what can we conclude about s1.equals (s2) ?

A: s1.equals(s2) is false.

ASIDE: Java uses "Horner's rule" for efficient polynomial evaluation

$$
s[0] * 31^{3}+s[1] * 31^{2}+s[2] * 31+s[3]
$$

There is no need to compute each x^{i} separately.

ASIDE: Java uses "Horner's rule" for efficient polynomial evaluation

$$
\begin{aligned}
& s[0] * 31^{3}+s[1] * 31^{2}+s[2] * 31+s[3] \\
= & \left(s[0] * 31^{2}+s[1] * 31^{1}+s[2]\right) * 31+s[3] \\
= & \left(\left(s[0] * 31^{1}+s[1]\right) * 31+s[2]\right) * 31+s[3]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{h}=0 \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\text { s. length } ; \mathrm{i}++) \\
& \quad \mathrm{h}=\mathrm{h}^{*} 31+s[\mathrm{i}]
\end{aligned}
$$

For a degree n polynomial, Horner's rule uses $\mathrm{O}(\mathrm{n})$ multiplications, not $\mathrm{O}\left(n^{2}\right)$.

Coming up...

Lectures

Wed 23
Hashing
Fri. March 25
Graphs 1

Assessments

Assignment 4 will be posted Wednesday, hopefully.

