
1

COMP 250

Lecture 28

heaps 2

March 18, 2022

RECALL: min Heap (definition)

2

Complete binary tree with (unique) comparable keys, such
that each node’s key is less than its children’s key(s).

l uf

e

a

b

k

m

Heap index relations

3

l uf

e

a

b

k

m

1

2 3

4 5 6 7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Not used

parent = child / 2
left = 2*parent
right = 2*parent + 1

Plan for today

• building a heap -- best and worst cases

• removeMin() using array indices

• heapsort

4

Recall: How to build a heap ?

5

0 1 2 3 4 5 6 7 8 9

l b c u k e a m f

buildHeap(list){
create an array arr[] with list.size+1 slots
for (k = 1; k <= list.size; k++){

arr[k] = list[k-1] // list indices are 0, .. ,size-1
upHeap(arr, k) }

}
}

buildHeap(list){
create an array arr[] with list.size+1 slots
for (k = 1; k <= list.size; k++){

arr[k] = list[k-1] // list indices are 0, .. ,size-1
upHeap(arr, k) }

}
return arr

}

upHeap(arr, k){ // from last lecture
i = k
while (i > 1) and (arr[i] < arr[i / 2]){

swapkeys(i, i/2)
i = i/2

}
}

Recall: How to build a heap ?

6

Time Complexity of buildHeap

Given an array with keys, how many swaps do we need to
upHeap each key?

In the best case, … ?

In the worst case, ... ?

7

Best case of buildHeap

8

0 1 2 3 4 5 6 7 8 9

a b c f u l m j k

u lf

b

a

c

m

kj

1

2 3

4 5 6 7

8 9 10 11 12 13

In the best case, the keys already satisfy the heap property, and no
swaps are necessary.

The time complexity in the best case is O , because we need to
ensure each node’s key is greater than its parent’s key.

9

f ek

m

u

l

c

ab

1

2 3

4 5 6 7

8 9 10 11 12 13

Worse case of buildHeap ?

How many upHeap swaps do we need for key at position ?

0 1 2 3 4 5 6 7 8 9

u m l k f e c b a

In this example, each parent key is
greater than both children keys.

10

ea

c

f

m

jd

1

2 3

4 5 6 7

8 9 10 11 12 13

j

level
0

1

2

3

Worse case of buildHeap ?

How many upHeap swaps do we need for key at position ?
Position is at some level, such that:

, so ?

11

ea

c

f

m

jd

1

2 3

4 5 6 7

8 9 10 11 12 13

j

level
0

1

2

3

Worse case of buildHeap ?

How many upHeap swaps do we need for key at position ?
Position is at some level, such that:

, so

Worse case of buildHeap

Thus, the worst case number of swaps needed to build a
heap of size using upHeap is

12

ea

c

f

m

j

jd

1

2 3

4 5 6 7

8 9 10 11 12 13

Key at position requires at most swaps.

0 1000 2000 3000 4000 5000

12

8

4

0

13

=

Area under the dashed curve is the total
number of swaps (worst case) of buildHeap.

0 1000 2000 3000 4000 5000

12

8

4

0

14

0 1000 2000 3000 4000 5000

12

8

4

0

15

0 1000 2000 3000 4000 5000

12

8

4

0

16

The worst case number of swaps of buildHeap is
between and

So the worst case is

This worst case can occurs, for example, if the given list is
ordered from large to small.

17

Plan for today

• building a heap -- best and worst cases

• removeMin() using array indices

• heapsort

18

Recall from last lecture

19

add(key) removeMin()

“upHeap” “downHeap”

20

l ue

c

a

b

k

m

1

2 3

4 5 6 7

8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a c b e l u k m f

e.g. removeMin()

f

21

l ue

c

f

b

k

m

1

2 3

4 5 6 7

8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f c b e l u k m

a

f

22

l ue

c

b

f

k

m

1

2 3

4 5 6 7

8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b c f e l u k m

“downHeap”

Let arr[] be the array.
Let size be the number of keys in the heap.

removeMin(arr){
tmp = arr[1]
arr[1] = arr[size]
size = size - 1
downHeap(arr, size) // next slides
return tmp

}

removeMin() with array indexing

23

Let arr[] be the array.
Let size be the number of keys in the heap.

removeMin(arr){
tmp = arr[1]
arr[1] = arr[size]
size = size – 1 // note the new value
downHeap(arr, size) // next slides
return tmp

}

removeMin() with array indexing

24

25

downHeap(arr, size){ // size parameter explained later

i = 1
while (2*i <= size){ // check if there is a left child

child = 2*i // left child’s index
if child < size { // if child == size, then there is no right child

if (arr[child + 1] < arr [child]) // right < left ?
child = child + 1 // choose smaller child

}
if (arr[child] < arr[i]){ // swap with child, if necessary.

swapElements(i , child)
i = child

}
else return // avoids infinite loop.

}
}

Identify the smaller child (left or right?)

Swap if necessary.

26

downHeap(arr, size){

i = 1
while (2*i <= size){ // check if there is a left child

child = 2*i // left child’s index
if child < size { // ... then there is a right child

if (arr[child + 1] < arr [child]) // right < left ?
child = child + 1 // choose smaller child

}
if (arr[child] < arr[i]){ // swap with child, if necessary.

swapElements(i , child)
i = child

}
else return // avoids infinite loop.

}
}

downHeap(arr, size){

i = 1
while (2*i <= size){ // check if there is a left child

child = 2*i // left child’s index
if child < size { // ... then there is a right child

if (arr[child + 1] < arr [child]) // right < left ?
child = child + 1 // choose smaller child

}
if (arr[child] < arr[i]){ // swap with child, if necessary.

swapkeys(arr, i , child)
i = child

}
else return // avoids infinite loop.

}
}

27

Plan for today

• building a heap -- best and worst cases

• removeMin() using array indices

• heapsort

28

Given a list with keys

• Build a heap using an array.

• Call removeMin() times, for
For the remove, store the removed element in
array slot This gives the elements in the
reversed order.

• Reverse the order of elements.
You could build a maxHeap and removeMax instead.

Heapsort

29

Given a list with keys

• Build a heap using an array.

• Call removeMin() times, for
For the remove, store the removed key in
array slot
This sorts the keys in the reversed order.

• Reverse the order of keys.
You could build a maxHeap and removeMax instead.

Heapsort

30

Heapsort

31

heapsort(list){
arr = buildheap(list)

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 – i)  note size parameter
downHeap(arr,)

}
return reverse(arr)

}

Here is the algorithm. Let’s walk through an example.

b d a f l u k e w

32

heapsort(list){
arr = buildheap(list)  next slide

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 – i)
downHeap(arr,)

}
return reverse(arr)

}

Example of input list:

1 2 3 4 5 6 7 8 9

a d b e l u k f w

33

heapsort(list){
arr = buildheap(list) // done (see above)

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 – i)
downHeap(arr,)

}
return reverse(arr)

}

This is now a heap.

1 2 3 4 5 6 7 8 9

a d b e l u k f w
w d b e l u k f a

34

heapsort(list){
arr = buildheap(list)

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 –)
downHeap(arr,)

}
return reverse(arr)

}

1 2 3 4 5 6 7 8 9

a d b e l u k f w
b d w e l u k f a

35

heapsort(list){
arr = buildheap(list)

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 – i)
downHeap(arr,)

}
return reverse(arr)

}

1 2 3 4 5 6 7 8 9

a d b e l u k f w
b d k e l u w f a

36

heapsort(list){
arr = buildheap(list)

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 –)
downHeap(arr,)

}
return reverse(arr)

}

1 2 3 4 5 6 7 8 9

a d b e l u k f w
b d k e l u w f a
f d k e l u w b a

37

heapsort(list){
arr = buildheap(list)

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 – i)
downHeap(arr,)

}
return reverse(arr)

}

1 2 3 4 5 6 7 8 9

a d b e l u k f w
b d k e l u w f a
d f k e l u w b a

38

heapsort(list){
arr = buildheap(list)

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 – i)
downHeap(arr,)

}
return reverse(arr)

}

1 2 3 4 5 6 7 8 9

a d b e l u k f w
b d k e l u w f a
d e k f l u w b a

39

heapsort(list){
arr = buildheap(list)

= list.size
for = 1 to {

swapkeys(arr, 1,)
downHeap(arr,)

}
return reverse(arr)

}

1 2 3 4 5 6 7 8 9

a d b e l u k f w
b d k e l u w f a
d e k f l u w b a
e f k w l u d b a
f l k w u e d b a
k l u w f e d b a
l w u k f e d b a
u w l k f e d b a
w u l k f e d b a

The keys are in the reverse order. So we need to reverse their
order and return.

40

Heapsort (worst case)

Worse case is that we have to swap all the
way from level 0 to the level of node .

e.g. This happens if the heap we build is
already sorted.

41

heapsort(list){
arr = buildheap(list)

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 – i)
downHeap(arr,)

}
return reverse(arr)

}

Heapsort (worst case)

42

heapsort(list){
arr = buildheap(list)

= list.size
for = 1 to {

swapkeys(arr, 1, + 1 – i)
downHeap(arr,)

}
return reverse(arr)

}

௡ିଵ

௜ୀଵ

This is the same as the
above summation!

Heapsort (worst case)

= in the worst case.

So, we say is in the worst case.

This worst case is the same as mergesort, and it is
better than quicksort’s worst case which is

43

Heapsort (best case?)

Heapsort is even in best case. Intuitively, why ?

The first step of heapsort is to build a heap. Once you have a
heap, approximately half the keys lie at the deepest level and
these tend to be the largest keys. So, each time you call
removeMin and move a key from the bottom to the top, it
will tend to downHeap back down close to bottom. So the
majority of the keys will require close to swaps!

44

Heapsort versus Quicksort ?

Heapsort is in both best and worst case.

Quicksort is in best case but in worst case.

Yet quicksort “quicker” than heapsort in practice. How ?

ASIDE: The following slides are not on the final exam,
and you will learn more about it in COMP 251. I mention it
now for your interest only.

45

Quicksort worst case
An example of when Quicksort is ଶ : the list is already sorted.

In this case, each partition splits the list into two lists of size and 0.

etc...

46

4 5 7 11 13 16 21 22 25 26 35 37 39 41 43 48

4 5 7 11 13 16 21 22 25 26 35 37 39 41 43

4 5 7 11 13 16 21 22 25 26 35 37 39 41

pivots

4 5

Recall Quicksort (“in place”, using an array)

47

quicksort(list, low, high){ // void
if low < high {

wall = partition (list, low, high)
quicksort(list, low, wall - 1)
quicksort(list, wall + 1, high)

}
}

partition(list, low , high)
pivot = list[high]
wall = low - 1
for (i = low ; i <= high; i++)

if (list[i] <= pivot){
wall ++
list.swap(wall, i)

}
return wall

}

The pivot was chosen to be the last element
in the array. But this is not necessary.
Instead we can swap the element at high
with another element (next slide)

48

If we knew which element was the median, we could use it. But finding the
median of numbers takes time in the worst case, which would defeat
the purpose! Instead, we choose the median of a few of the elements,
namely those in positions {low, mid, high}. e.g. median(4, 22, 48) is 22.
It takes three comparisons i.e. O(1) to do so. We then swap this median with
the last element, and otherwise the quicksort algorithm is the same.
This is called the “median of 3” method.

4 5 7 11 13 16 21 22 25 26 35 37 39 41 43 48
low mid high

4 5 7 11 13 16 21 48 25 26 35 37 39 41 43 22

This will give a much better partition.
For more general examples, it is much more likely to give a better partition.

pivot

Heapsort versus Quicksort ?

Heapsort is in both best and worst case.

Quicksort is in best case but in worst case.

Yet quicksort “quicker” than heapsort in practice. How ?

So when people talk about quicksort, then are including a
method like ‘median of three’ (or random) for choosing the
pivot. This hugely speeds up quicksort in practice,
especially in the “worst case” just mentioned.

49

Coming up…

Lectures

Mon. & Wed March 21 & 23

Maps & Hashing

Fri. March 25

Graphs 1

Assessments

Quiz 4 (lectures 20-25)

today

Assignment 4 will be posted next week

50

